43 thm trm.eq_iff |
43 thm trm.eq_iff |
44 thm trm.fv_bn_eqvt |
44 thm trm.fv_bn_eqvt |
45 thm trm.size_eqvt |
45 thm trm.size_eqvt |
46 thm trm.supp |
46 thm trm.supp |
47 thm trm.supp[simplified] |
47 thm trm.supp[simplified] |
|
48 |
|
49 lemma Abs_set_fcb2: |
|
50 fixes as bs :: "atom set" |
|
51 and x y :: "'b :: fs" |
|
52 and c::"'c::fs" |
|
53 assumes eq: "[as]set. x = [bs]set. y" |
|
54 and fin: "finite as" "finite bs" |
|
55 and fcb1: "as \<sharp>* f as x c" |
|
56 and fresh1: "as \<sharp>* c" |
|
57 and fresh2: "bs \<sharp>* c" |
|
58 and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c" |
|
59 and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c" |
|
60 shows "f as x c = f bs y c" |
|
61 proof - |
|
62 have "supp (as, x, c) supports (f as x c)" |
|
63 unfolding supports_def fresh_def[symmetric] |
|
64 by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh) |
|
65 then have fin1: "finite (supp (f as x c))" |
|
66 using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair) |
|
67 have "supp (bs, y, c) supports (f bs y c)" |
|
68 unfolding supports_def fresh_def[symmetric] |
|
69 by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh) |
|
70 then have fin2: "finite (supp (f bs y c))" |
|
71 using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair) |
|
72 obtain q::"perm" where |
|
73 fr1: "(q \<bullet> as) \<sharp>* (x, c, f as x c, f bs y c)" and |
|
74 fr2: "supp q \<sharp>* ([as]set. x)" and |
|
75 inc: "supp q \<subseteq> as \<union> (q \<bullet> as)" |
|
76 using at_set_avoiding3[where xs="as" and c="(x, c, f as x c, f bs y c)" and x="[as]set. x"] |
|
77 fin1 fin2 fin |
|
78 by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv) |
|
79 have "[q \<bullet> as]set. (q \<bullet> x) = q \<bullet> ([as]set. x)" by simp |
|
80 also have "\<dots> = [as]set. x" |
|
81 by (simp only: fr2 perm_supp_eq) |
|
82 finally have "[q \<bullet> as]set. (q \<bullet> x) = [bs]set. y" using eq by simp |
|
83 then obtain r::perm where |
|
84 qq1: "q \<bullet> x = r \<bullet> y" and |
|
85 qq2: "q \<bullet> as = r \<bullet> bs" and |
|
86 qq3: "supp r \<subseteq> (q \<bullet> as) \<union> bs" |
|
87 apply(drule_tac sym) |
|
88 apply(simp only: Abs_eq_iff2 alphas) |
|
89 apply(erule exE) |
|
90 apply(erule conjE)+ |
|
91 apply(drule_tac x="p" in meta_spec) |
|
92 apply(simp add: set_eqvt) |
|
93 apply(blast) |
|
94 done |
|
95 have "as \<sharp>* f as x c" by (rule fcb1) |
|
96 then have "q \<bullet> (as \<sharp>* f as x c)" |
|
97 by (simp add: permute_bool_def) |
|
98 then have "(q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c" |
|
99 apply(simp add: fresh_star_eqvt set_eqvt) |
|
100 apply(subst (asm) perm1) |
|
101 using inc fresh1 fr1 |
|
102 apply(auto simp add: fresh_star_def fresh_Pair) |
|
103 done |
|
104 then have "(r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp |
|
105 then have "r \<bullet> (bs \<sharp>* f bs y c)" |
|
106 apply(simp add: fresh_star_eqvt set_eqvt) |
|
107 apply(subst (asm) perm2[symmetric]) |
|
108 using qq3 fresh2 fr1 |
|
109 apply(auto simp add: set_eqvt fresh_star_def fresh_Pair) |
|
110 done |
|
111 then have fcb2: "bs \<sharp>* f bs y c" by (simp add: permute_bool_def) |
|
112 have "f as x c = q \<bullet> (f as x c)" |
|
113 apply(rule perm_supp_eq[symmetric]) |
|
114 using inc fcb1 fr1 by (auto simp add: fresh_star_def) |
|
115 also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c" |
|
116 apply(rule perm1) |
|
117 using inc fresh1 fr1 by (auto simp add: fresh_star_def) |
|
118 also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp |
|
119 also have "\<dots> = r \<bullet> (f bs y c)" |
|
120 apply(rule perm2[symmetric]) |
|
121 using qq3 fresh2 fr1 by (auto simp add: fresh_star_def) |
|
122 also have "... = f bs y c" |
|
123 apply(rule perm_supp_eq) |
|
124 using qq3 fr1 fcb2 by (auto simp add: fresh_star_def) |
|
125 finally show ?thesis by simp |
|
126 qed |
|
127 |
48 |
128 |
49 lemma Abs_lst_fcb2: |
129 lemma Abs_lst_fcb2: |
50 fixes as bs :: "atom list" |
130 fixes as bs :: "atom list" |
51 and x y :: "'b :: fs" |
131 and x y :: "'b :: fs" |
52 and c::"'c::fs" |
132 and c::"'c::fs" |