Nominal/Ex/SingleLet.thy
changeset 2386 b1b648933850
parent 2385 fe25a3ffeb14
child 2387 082d9fd28f89
equal deleted inserted replaced
2385:fe25a3ffeb14 2386:b1b648933850
    56   "(op= ===> op= ===> alpha_trm_raw ===> alpha_trm_raw ===> alpha_trm_raw ===> alpha_trm_raw) 
    56   "(op= ===> op= ===> alpha_trm_raw ===> alpha_trm_raw ===> alpha_trm_raw ===> alpha_trm_raw) 
    57      Foo_raw Foo_raw"
    57      Foo_raw Foo_raw"
    58   "(op= ===> op= ===> alpha_trm_raw ===> alpha_trm_raw) Bar_raw Bar_raw"
    58   "(op= ===> op= ===> alpha_trm_raw ===> alpha_trm_raw) Bar_raw Bar_raw"
    59   "(op= ===> alpha_trm_raw ===> alpha_trm_raw ===> alpha_trm_raw) Baz_raw Baz_raw"
    59   "(op= ===> alpha_trm_raw ===> alpha_trm_raw ===> alpha_trm_raw) Baz_raw Baz_raw"
    60   "(op = ===> op = ===> alpha_trm_raw ===> alpha_assg_raw) As_raw As_raw"
    60   "(op = ===> op = ===> alpha_trm_raw ===> alpha_assg_raw) As_raw As_raw"
    61 apply(auto)
    61 apply(simp only: fun_rel_def)
    62 apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
    62 apply(rule allI | rule impI)+
    63 apply(rule refl)
    63 apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
    64 apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
    64 apply(assumption)
    65 apply(assumption)
    65 apply(simp only: fun_rel_def)
    66 apply(assumption)
    66 apply(rule allI | rule impI)+
       
    67 apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
       
    68 apply(assumption)
       
    69 apply(assumption)
       
    70 apply(simp only: fun_rel_def)
       
    71 apply(rule allI | rule impI)+
    67 apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
    72 apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
    68 apply(rule_tac x="0" in exI)
    73 apply(rule_tac x="0" in exI)
    69 apply(simp add: alphas fresh_star_def fresh_zero_perm a2)
    74 apply(simp add: alphas fresh_star_def fresh_zero_perm a2)
    70 apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
    75 apply(simp only: fun_rel_def)
    71 apply(rule_tac x="0" in exI)
    76 apply(rule allI | rule impI)+
    72 apply(simp add: alphas fresh_star_def fresh_zero_perm a2)
    77 apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
    73 apply(simp add: a1)
    78 apply(rule_tac x="0" in exI)
    74 apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
    79 apply(simp add: alphas fresh_star_def fresh_zero_perm a2 alpha_bn_imps)
    75 apply(rule_tac x="0" in exI)
    80 apply(simp add: alphas fresh_star_def fresh_zero_perm a2 alpha_bn_imps)
    76 apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def)
    81 apply(simp only: fun_rel_def)
    77 apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
    82 apply(rule allI | rule impI)+
    78 apply(rule_tac x="0" in exI)
    83 apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
    79 apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def)
    84 apply(rule_tac x="0" in exI)
    80 apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
    85 apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def)
    81 apply(rule_tac x="0" in exI)
    86 apply(simp only: fun_rel_def)
    82 apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def)
    87 apply(rule allI | rule impI)+
    83 apply(rule_tac x="0" in exI)
    88 apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
    84 apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def)
    89 apply(rule_tac x="0" in exI)
    85 apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
    90 apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def)
    86 apply(rule_tac x="0" in exI)
    91 apply(simp only: fun_rel_def)
    87 apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def)
    92 apply(rule allI | rule impI)+
    88 apply(rule refl)
    93 apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
       
    94 apply(rule_tac x="0" in exI)
       
    95 apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def)
       
    96 apply(rule_tac x="0" in exI)
       
    97 apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def)
       
    98 apply(simp only: fun_rel_def)
       
    99 apply(rule allI | rule impI)+
       
   100 apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros)
       
   101 apply(rule_tac x="0" in exI)
       
   102 apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def)
       
   103 apply(assumption)
    89 done
   104 done
    90 
   105 
    91 lemma [quot_respect]:
   106 lemma [quot_respect]:
    92   "(alpha_trm_raw ===> op =) fv_trm_raw fv_trm_raw"
   107   "(alpha_trm_raw ===> op =) fv_trm_raw fv_trm_raw"
    93   "(alpha_assg_raw ===> op =) fv_bn_raw fv_bn_raw"
   108   "(alpha_assg_raw ===> op =) fv_bn_raw fv_bn_raw"