diff -r fe25a3ffeb14 -r b1b648933850 Nominal/Ex/SingleLet.thy --- a/Nominal/Ex/SingleLet.thy Tue Jul 27 14:37:59 2010 +0200 +++ b/Nominal/Ex/SingleLet.thy Tue Jul 27 23:34:30 2010 +0200 @@ -58,34 +58,49 @@ "(op= ===> op= ===> alpha_trm_raw ===> alpha_trm_raw) Bar_raw Bar_raw" "(op= ===> alpha_trm_raw ===> alpha_trm_raw ===> alpha_trm_raw) Baz_raw Baz_raw" "(op = ===> op = ===> alpha_trm_raw ===> alpha_assg_raw) As_raw As_raw" -apply(auto) +apply(simp only: fun_rel_def) +apply(rule allI | rule impI)+ apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros) -apply(rule refl) +apply(assumption) +apply(simp only: fun_rel_def) +apply(rule allI | rule impI)+ apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros) apply(assumption) apply(assumption) +apply(simp only: fun_rel_def) +apply(rule allI | rule impI)+ apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros) apply(rule_tac x="0" in exI) apply(simp add: alphas fresh_star_def fresh_zero_perm a2) +apply(simp only: fun_rel_def) +apply(rule allI | rule impI)+ apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros) apply(rule_tac x="0" in exI) -apply(simp add: alphas fresh_star_def fresh_zero_perm a2) -apply(simp add: a1) +apply(simp add: alphas fresh_star_def fresh_zero_perm a2 alpha_bn_imps) +apply(simp add: alphas fresh_star_def fresh_zero_perm a2 alpha_bn_imps) +apply(simp only: fun_rel_def) +apply(rule allI | rule impI)+ apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros) apply(rule_tac x="0" in exI) apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def) +apply(simp only: fun_rel_def) +apply(rule allI | rule impI)+ apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros) apply(rule_tac x="0" in exI) apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def) +apply(simp only: fun_rel_def) +apply(rule allI | rule impI)+ apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros) apply(rule_tac x="0" in exI) apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def) apply(rule_tac x="0" in exI) apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def) +apply(simp only: fun_rel_def) +apply(rule allI | rule impI)+ apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros) apply(rule_tac x="0" in exI) apply(simp add: alphas fresh_star_def fresh_zero_perm a2 prod_alpha_def) -apply(rule refl) +apply(assumption) done lemma [quot_respect]: