Nominal/nominal_dt_supp.ML
changeset 2596 9fa37acdb2ce
parent 2595 07f775729e90
child 2597 0f289a52edbe
equal deleted inserted replaced
2595:07f775729e90 2596:9fa37acdb2ce
     1 (*  Title:      nominal_dt_alpha.ML
       
     2     Author:     Christian Urban
       
     3     Author:     Cezary Kaliszyk
       
     4 
       
     5   Deriving support propoerties for the quotient types.
       
     6 *)
       
     7 
       
     8 signature NOMINAL_DT_SUPP =
       
     9 sig
       
    10   
       
    11 end
       
    12 
       
    13 structure Nominal_Dt_Supp: NOMINAL_DT_SUPP =
       
    14 struct
       
    15 
       
    16 (* supports lemmas for constructors *)
       
    17 
       
    18 fun mk_supports_goal ctxt qtrm =
       
    19   let  
       
    20     val vs = fresh_args ctxt qtrm
       
    21     val rhs = list_comb (qtrm, vs)
       
    22     val lhs = fold (curry HOLogic.mk_prod) vs @{term "()"}
       
    23       |> mk_supp
       
    24   in
       
    25     mk_supports lhs rhs
       
    26     |> HOLogic.mk_Trueprop
       
    27   end
       
    28 
       
    29 fun supports_tac ctxt perm_simps =
       
    30   let
       
    31     val ss1 = HOL_basic_ss addsimps @{thms supports_def fresh_def[symmetric]}
       
    32     val ss2 = HOL_ss addsimps @{thms swap_fresh_fresh fresh_Pair}
       
    33   in
       
    34     EVERY' [ simp_tac ss1,
       
    35              Nominal_Permeq.eqvt_strict_tac ctxt perm_simps [],
       
    36              simp_tac ss2 ]
       
    37   end
       
    38 
       
    39 fun prove_supports_single ctxt perm_simps qtrm =
       
    40   let
       
    41     val goal = mk_supports_goal ctxt qtrm 
       
    42     val ctxt' = Variable.auto_fixes goal ctxt
       
    43   in
       
    44     Goal.prove ctxt' [] [] goal
       
    45       (K (HEADGOAL (supports_tac ctxt perm_simps)))
       
    46     |> singleton (ProofContext.export ctxt' ctxt)
       
    47   end
       
    48 
       
    49 fun prove_supports ctxt perm_simps qtrms =
       
    50   map (prove_supports_single ctxt perm_simps) qtrms
       
    51 
       
    52 
       
    53 (* finite supp lemmas for qtypes *)
       
    54 
       
    55 fun prove_fsupp ctxt qtys qinduct qsupports_thms =
       
    56   let
       
    57     val (vs, ctxt') = Variable.variant_fixes (replicate (length qtys) "x") ctxt
       
    58     val goals = vs ~~ qtys
       
    59       |> map Free
       
    60       |> map (mk_finite o mk_supp)
       
    61       |> foldr1 (HOLogic.mk_conj)
       
    62       |> HOLogic.mk_Trueprop
       
    63 
       
    64     val tac = 
       
    65       EVERY' [ rtac @{thm supports_finite},
       
    66                resolve_tac qsupports_thms,
       
    67                asm_simp_tac (HOL_ss addsimps @{thms finite_supp supp_Pair finite_Un}) ]
       
    68   in
       
    69     Goal.prove ctxt' [] [] goals
       
    70       (K (HEADGOAL (rtac qinduct THEN_ALL_NEW tac)))
       
    71     |> singleton (ProofContext.export ctxt' ctxt)
       
    72     |> Datatype_Aux.split_conj_thm
       
    73     |> map zero_var_indexes
       
    74   end
       
    75 
       
    76 
       
    77 (* finite supp instances *)
       
    78 
       
    79 fun fs_instance qtys qfull_ty_names tvs qfsupp_thms lthy =
       
    80   let
       
    81     val lthy1 = 
       
    82       lthy
       
    83       |> Local_Theory.exit_global
       
    84       |> Class.instantiation (qfull_ty_names, tvs, @{sort fs}) 
       
    85   
       
    86     fun tac _ =
       
    87       Class.intro_classes_tac [] THEN
       
    88         (ALLGOALS (resolve_tac qfsupp_thms))
       
    89   in
       
    90     lthy1
       
    91     |> Class.prove_instantiation_exit tac 
       
    92     |> Named_Target.theory_init
       
    93   end
       
    94 
       
    95 
       
    96 (* proves that fv and fv_bn equals supp *)
       
    97 
       
    98 fun gen_mk_goals fv supp =
       
    99   let
       
   100     val arg_ty = 
       
   101       fastype_of fv
       
   102       |> domain_type
       
   103   in
       
   104     (arg_ty, fn x => HOLogic.mk_eq (fv $ x, supp x))
       
   105   end
       
   106 
       
   107 fun mk_fvs_goals fv = gen_mk_goals fv mk_supp
       
   108 fun mk_fv_bns_goals fv_bn alpha_bn = gen_mk_goals fv_bn (mk_supp_rel alpha_bn)
       
   109 
       
   110 fun add_ss thms =
       
   111   HOL_basic_ss addsimps thms
       
   112 
       
   113 fun symmetric thms = 
       
   114   map (fn thm => thm RS @{thm sym}) thms
       
   115 
       
   116 val supp_Abs_set = @{thms supp_Abs(1)[symmetric]}
       
   117 val supp_Abs_res = @{thms supp_Abs(2)[symmetric]}
       
   118 val supp_Abs_lst = @{thms supp_Abs(3)[symmetric]}
       
   119 
       
   120 fun mk_supp_abs ctxt (BC (Set, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_set 
       
   121   | mk_supp_abs ctxt (BC (Res, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_res
       
   122   | mk_supp_abs ctxt (BC (Lst, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_lst
       
   123 
       
   124 fun mk_supp_abs_tac ctxt [] = []
       
   125   | mk_supp_abs_tac ctxt (BC (_, [], _)::xs) = mk_supp_abs_tac ctxt xs
       
   126   | mk_supp_abs_tac ctxt (bc::xs) = (DETERM o mk_supp_abs ctxt bc)::mk_supp_abs_tac ctxt xs
       
   127 
       
   128 fun mk_bn_supp_abs_tac trm =
       
   129   trm
       
   130   |> fastype_of
       
   131   |> body_type
       
   132   |> (fn ty => case ty of
       
   133         @{typ "atom set"}  => simp_tac (add_ss supp_Abs_set)
       
   134       | @{typ "atom list"} => simp_tac (add_ss supp_Abs_lst)
       
   135       | _ => raise TERM ("mk_bn_supp_abs_tac", [trm]))
       
   136 
       
   137 
       
   138 val thms1 = @{thms supp_Pair supp_eqvt[symmetric] Un_assoc conj_assoc}
       
   139 val thms2 = @{thms de_Morgan_conj Collect_disj_eq finite_Un}
       
   140 val thms3 = @{thms alphas prod_alpha_def prod_fv.simps prod_rel_def permute_prod_def 
       
   141   prod.recs prod.cases prod.inject not_True_eq_False empty_def[symmetric] finite.emptyI}
       
   142 
       
   143 fun prove_fv_supp qtys qtrms fvs fv_bns alpha_bns fv_simps eq_iffs perm_simps 
       
   144   fv_bn_eqvts qinduct bclausess ctxt =
       
   145   let
       
   146     val goals1 = map mk_fvs_goals fvs
       
   147     val goals2 = map2 mk_fv_bns_goals fv_bns alpha_bns   
       
   148 
       
   149     fun tac ctxt =
       
   150       SUBGOAL (fn (goal, i) =>
       
   151         let
       
   152           val (fv_fun, arg) = 
       
   153             goal |> Envir.eta_contract
       
   154                  |> Logic.strip_assums_concl
       
   155                  |> HOLogic.dest_Trueprop
       
   156                  |> fst o HOLogic.dest_eq
       
   157                  |> dest_comb
       
   158           val supp_abs_tac = 
       
   159             case (AList.lookup (op=) (qtrms ~~ bclausess) (head_of arg)) of
       
   160               SOME bclauses => EVERY' (mk_supp_abs_tac ctxt bclauses)
       
   161             | NONE => mk_bn_supp_abs_tac fv_fun
       
   162         in
       
   163           EVERY' [ TRY o asm_full_simp_tac (add_ss (@{thm supp_Pair[symmetric]}::fv_simps)),
       
   164                    TRY o supp_abs_tac,
       
   165                    TRY o simp_tac (add_ss @{thms supp_def supp_rel_def}),
       
   166                    TRY o Nominal_Permeq.eqvt_tac ctxt (perm_simps @ fv_bn_eqvts) [], 
       
   167                    TRY o simp_tac (add_ss (@{thms Abs_eq_iff} @ eq_iffs)),
       
   168                    TRY o asm_full_simp_tac (add_ss thms3),
       
   169                    TRY o simp_tac (add_ss thms2),
       
   170                    TRY o asm_full_simp_tac (add_ss (thms1 @ (symmetric fv_bn_eqvts)))] i
       
   171         end)
       
   172   in
       
   173     induct_prove qtys (goals1 @ goals2) qinduct tac ctxt
       
   174     |> map atomize
       
   175     |> map (simplify (HOL_basic_ss addsimps @{thms fun_eq_iff[symmetric]}))
       
   176   end
       
   177 
       
   178 
       
   179 fun prove_bns_finite qtys qbns qinduct qbn_simps ctxt =
       
   180   let
       
   181     fun mk_goal qbn = 
       
   182       let
       
   183         val arg_ty = domain_type (fastype_of qbn)
       
   184         val finite = @{term "finite :: atom set => bool"}
       
   185       in
       
   186         (arg_ty, fn x => finite $ (to_set (qbn $ x)))
       
   187       end
       
   188 
       
   189     val props = map mk_goal qbns
       
   190     val ss_tac = asm_full_simp_tac (HOL_basic_ss addsimps (qbn_simps @ 
       
   191       @{thms set.simps set_append finite_insert finite.emptyI finite_Un}))
       
   192   in
       
   193     induct_prove qtys props qinduct (K ss_tac) ctxt
       
   194   end
       
   195 
       
   196 fun prove_perm_bn_alpha_thms qtys qperm_bns alpha_bns qinduct qperm_bn_simps qeq_iffs qalpha_refls ctxt =
       
   197   let 
       
   198     val ([p], ctxt') = Variable.variant_fixes ["p"] ctxt
       
   199     val p = Free (p, @{typ perm})
       
   200 
       
   201     fun mk_goal qperm_bn alpha_bn =
       
   202       let
       
   203         val arg_ty = domain_type (fastype_of alpha_bn)
       
   204       in
       
   205         (arg_ty, fn x => (mk_id (Abs ("", arg_ty, alpha_bn $ Bound 0 $ (qperm_bn $ p $ Bound 0)))) $ x)
       
   206       end
       
   207 
       
   208     val props = map2 mk_goal qperm_bns alpha_bns
       
   209     val ss = @{thm id_def}::qperm_bn_simps @ qeq_iffs @ qalpha_refls
       
   210     val ss_tac = asm_full_simp_tac (HOL_ss addsimps ss)
       
   211   in
       
   212     induct_prove qtys props qinduct (K ss_tac) ctxt'
       
   213     |> ProofContext.export ctxt' ctxt
       
   214     |> map (simplify (HOL_basic_ss addsimps @{thms id_def})) 
       
   215   end
       
   216 
       
   217 
       
   218 end (* structure *)