Nominal/nominal_dt_supp.ML
changeset 2596 9fa37acdb2ce
parent 2595 07f775729e90
child 2597 0f289a52edbe
--- a/Nominal/nominal_dt_supp.ML	Mon Dec 06 17:11:34 2010 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,218 +0,0 @@
-(*  Title:      nominal_dt_alpha.ML
-    Author:     Christian Urban
-    Author:     Cezary Kaliszyk
-
-  Deriving support propoerties for the quotient types.
-*)
-
-signature NOMINAL_DT_SUPP =
-sig
-  
-end
-
-structure Nominal_Dt_Supp: NOMINAL_DT_SUPP =
-struct
-
-(* supports lemmas for constructors *)
-
-fun mk_supports_goal ctxt qtrm =
-  let  
-    val vs = fresh_args ctxt qtrm
-    val rhs = list_comb (qtrm, vs)
-    val lhs = fold (curry HOLogic.mk_prod) vs @{term "()"}
-      |> mk_supp
-  in
-    mk_supports lhs rhs
-    |> HOLogic.mk_Trueprop
-  end
-
-fun supports_tac ctxt perm_simps =
-  let
-    val ss1 = HOL_basic_ss addsimps @{thms supports_def fresh_def[symmetric]}
-    val ss2 = HOL_ss addsimps @{thms swap_fresh_fresh fresh_Pair}
-  in
-    EVERY' [ simp_tac ss1,
-             Nominal_Permeq.eqvt_strict_tac ctxt perm_simps [],
-             simp_tac ss2 ]
-  end
-
-fun prove_supports_single ctxt perm_simps qtrm =
-  let
-    val goal = mk_supports_goal ctxt qtrm 
-    val ctxt' = Variable.auto_fixes goal ctxt
-  in
-    Goal.prove ctxt' [] [] goal
-      (K (HEADGOAL (supports_tac ctxt perm_simps)))
-    |> singleton (ProofContext.export ctxt' ctxt)
-  end
-
-fun prove_supports ctxt perm_simps qtrms =
-  map (prove_supports_single ctxt perm_simps) qtrms
-
-
-(* finite supp lemmas for qtypes *)
-
-fun prove_fsupp ctxt qtys qinduct qsupports_thms =
-  let
-    val (vs, ctxt') = Variable.variant_fixes (replicate (length qtys) "x") ctxt
-    val goals = vs ~~ qtys
-      |> map Free
-      |> map (mk_finite o mk_supp)
-      |> foldr1 (HOLogic.mk_conj)
-      |> HOLogic.mk_Trueprop
-
-    val tac = 
-      EVERY' [ rtac @{thm supports_finite},
-               resolve_tac qsupports_thms,
-               asm_simp_tac (HOL_ss addsimps @{thms finite_supp supp_Pair finite_Un}) ]
-  in
-    Goal.prove ctxt' [] [] goals
-      (K (HEADGOAL (rtac qinduct THEN_ALL_NEW tac)))
-    |> singleton (ProofContext.export ctxt' ctxt)
-    |> Datatype_Aux.split_conj_thm
-    |> map zero_var_indexes
-  end
-
-
-(* finite supp instances *)
-
-fun fs_instance qtys qfull_ty_names tvs qfsupp_thms lthy =
-  let
-    val lthy1 = 
-      lthy
-      |> Local_Theory.exit_global
-      |> Class.instantiation (qfull_ty_names, tvs, @{sort fs}) 
-  
-    fun tac _ =
-      Class.intro_classes_tac [] THEN
-        (ALLGOALS (resolve_tac qfsupp_thms))
-  in
-    lthy1
-    |> Class.prove_instantiation_exit tac 
-    |> Named_Target.theory_init
-  end
-
-
-(* proves that fv and fv_bn equals supp *)
-
-fun gen_mk_goals fv supp =
-  let
-    val arg_ty = 
-      fastype_of fv
-      |> domain_type
-  in
-    (arg_ty, fn x => HOLogic.mk_eq (fv $ x, supp x))
-  end
-
-fun mk_fvs_goals fv = gen_mk_goals fv mk_supp
-fun mk_fv_bns_goals fv_bn alpha_bn = gen_mk_goals fv_bn (mk_supp_rel alpha_bn)
-
-fun add_ss thms =
-  HOL_basic_ss addsimps thms
-
-fun symmetric thms = 
-  map (fn thm => thm RS @{thm sym}) thms
-
-val supp_Abs_set = @{thms supp_Abs(1)[symmetric]}
-val supp_Abs_res = @{thms supp_Abs(2)[symmetric]}
-val supp_Abs_lst = @{thms supp_Abs(3)[symmetric]}
-
-fun mk_supp_abs ctxt (BC (Set, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_set 
-  | mk_supp_abs ctxt (BC (Res, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_res
-  | mk_supp_abs ctxt (BC (Lst, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_lst
-
-fun mk_supp_abs_tac ctxt [] = []
-  | mk_supp_abs_tac ctxt (BC (_, [], _)::xs) = mk_supp_abs_tac ctxt xs
-  | mk_supp_abs_tac ctxt (bc::xs) = (DETERM o mk_supp_abs ctxt bc)::mk_supp_abs_tac ctxt xs
-
-fun mk_bn_supp_abs_tac trm =
-  trm
-  |> fastype_of
-  |> body_type
-  |> (fn ty => case ty of
-        @{typ "atom set"}  => simp_tac (add_ss supp_Abs_set)
-      | @{typ "atom list"} => simp_tac (add_ss supp_Abs_lst)
-      | _ => raise TERM ("mk_bn_supp_abs_tac", [trm]))
-
-
-val thms1 = @{thms supp_Pair supp_eqvt[symmetric] Un_assoc conj_assoc}
-val thms2 = @{thms de_Morgan_conj Collect_disj_eq finite_Un}
-val thms3 = @{thms alphas prod_alpha_def prod_fv.simps prod_rel_def permute_prod_def 
-  prod.recs prod.cases prod.inject not_True_eq_False empty_def[symmetric] finite.emptyI}
-
-fun prove_fv_supp qtys qtrms fvs fv_bns alpha_bns fv_simps eq_iffs perm_simps 
-  fv_bn_eqvts qinduct bclausess ctxt =
-  let
-    val goals1 = map mk_fvs_goals fvs
-    val goals2 = map2 mk_fv_bns_goals fv_bns alpha_bns   
-
-    fun tac ctxt =
-      SUBGOAL (fn (goal, i) =>
-        let
-          val (fv_fun, arg) = 
-            goal |> Envir.eta_contract
-                 |> Logic.strip_assums_concl
-                 |> HOLogic.dest_Trueprop
-                 |> fst o HOLogic.dest_eq
-                 |> dest_comb
-          val supp_abs_tac = 
-            case (AList.lookup (op=) (qtrms ~~ bclausess) (head_of arg)) of
-              SOME bclauses => EVERY' (mk_supp_abs_tac ctxt bclauses)
-            | NONE => mk_bn_supp_abs_tac fv_fun
-        in
-          EVERY' [ TRY o asm_full_simp_tac (add_ss (@{thm supp_Pair[symmetric]}::fv_simps)),
-                   TRY o supp_abs_tac,
-                   TRY o simp_tac (add_ss @{thms supp_def supp_rel_def}),
-                   TRY o Nominal_Permeq.eqvt_tac ctxt (perm_simps @ fv_bn_eqvts) [], 
-                   TRY o simp_tac (add_ss (@{thms Abs_eq_iff} @ eq_iffs)),
-                   TRY o asm_full_simp_tac (add_ss thms3),
-                   TRY o simp_tac (add_ss thms2),
-                   TRY o asm_full_simp_tac (add_ss (thms1 @ (symmetric fv_bn_eqvts)))] i
-        end)
-  in
-    induct_prove qtys (goals1 @ goals2) qinduct tac ctxt
-    |> map atomize
-    |> map (simplify (HOL_basic_ss addsimps @{thms fun_eq_iff[symmetric]}))
-  end
-
-
-fun prove_bns_finite qtys qbns qinduct qbn_simps ctxt =
-  let
-    fun mk_goal qbn = 
-      let
-        val arg_ty = domain_type (fastype_of qbn)
-        val finite = @{term "finite :: atom set => bool"}
-      in
-        (arg_ty, fn x => finite $ (to_set (qbn $ x)))
-      end
-
-    val props = map mk_goal qbns
-    val ss_tac = asm_full_simp_tac (HOL_basic_ss addsimps (qbn_simps @ 
-      @{thms set.simps set_append finite_insert finite.emptyI finite_Un}))
-  in
-    induct_prove qtys props qinduct (K ss_tac) ctxt
-  end
-
-fun prove_perm_bn_alpha_thms qtys qperm_bns alpha_bns qinduct qperm_bn_simps qeq_iffs qalpha_refls ctxt =
-  let 
-    val ([p], ctxt') = Variable.variant_fixes ["p"] ctxt
-    val p = Free (p, @{typ perm})
-
-    fun mk_goal qperm_bn alpha_bn =
-      let
-        val arg_ty = domain_type (fastype_of alpha_bn)
-      in
-        (arg_ty, fn x => (mk_id (Abs ("", arg_ty, alpha_bn $ Bound 0 $ (qperm_bn $ p $ Bound 0)))) $ x)
-      end
-
-    val props = map2 mk_goal qperm_bns alpha_bns
-    val ss = @{thm id_def}::qperm_bn_simps @ qeq_iffs @ qalpha_refls
-    val ss_tac = asm_full_simp_tac (HOL_ss addsimps ss)
-  in
-    induct_prove qtys props qinduct (K ss_tac) ctxt'
-    |> ProofContext.export ctxt' ctxt
-    |> map (simplify (HOL_basic_ss addsimps @{thms id_def})) 
-  end
-
-
-end (* structure *)