Nominal/nominal_dt_alpha.ML
changeset 2297 9ca7b249760e
child 2298 aead2aad845c
equal deleted inserted replaced
2296:45a69c9cc4cc 2297:9ca7b249760e
       
     1 (*  Title:      nominal_dt_alpha.ML
       
     2     Author:     Cezary Kaliszyk
       
     3     Author:     Christian Urban
       
     4 
       
     5   Definitions of the alpha relations.
       
     6 *)
       
     7 
       
     8 signature NOMINAL_DT_ALPHA =
       
     9 sig
       
    10   val define_raw_alpha: Datatype_Aux.descr -> (string * sort) list -> bn_info ->
       
    11     bclause list list list -> term list -> Proof.context -> 
       
    12     term list * thm list * thm list * thm * local_theory
       
    13 end
       
    14 
       
    15 structure Nominal_Dt_Alpha: NOMINAL_DT_ALPHA =
       
    16 struct
       
    17 
       
    18 (* construct the compound terms for prod_fv and prod_alpha *)
       
    19 fun mk_prod_fv (t1, t2) =
       
    20 let
       
    21   val ty1 = fastype_of t1
       
    22   val ty2 = fastype_of t2 
       
    23   val resT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2) --> @{typ "atom set"}
       
    24 in
       
    25   Const (@{const_name "prod_fv"}, [ty1, ty2] ---> resT) $ t1 $ t2
       
    26 end
       
    27 
       
    28 fun mk_prod_alpha (t1, t2) =
       
    29 let
       
    30   val ty1 = fastype_of t1
       
    31   val ty2 = fastype_of t2 
       
    32   val prodT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2)
       
    33   val resT = [prodT, prodT] ---> @{typ "bool"}
       
    34 in
       
    35   Const (@{const_name "prod_alpha"}, [ty1, ty2] ---> resT) $ t1 $ t2
       
    36 end
       
    37 
       
    38 (* generates the compound binder terms *)
       
    39 fun mk_binders lthy bmode args bodies = 
       
    40 let  
       
    41   fun bind_set lthy args (NONE, i) = setify lthy (nth args i)
       
    42     | bind_set _ args (SOME bn, i) = bn $ (nth args i)
       
    43   fun bind_lst lthy args (NONE, i) = listify lthy (nth args i)
       
    44     | bind_lst _ args (SOME bn, i) = bn $ (nth args i)
       
    45 
       
    46   val (combine_fn, bind_fn) =
       
    47     case bmode of
       
    48       Lst => (mk_append, bind_lst) 
       
    49     | Set => (mk_union,  bind_set)
       
    50     | Res => (mk_union,  bind_set)
       
    51 in
       
    52   foldl1 combine_fn (map (bind_fn lthy args) bodies)
       
    53 end
       
    54 
       
    55 (* produces the term for an alpha with abstraction *)
       
    56 fun mk_alpha_term bmode fv alpha args args' binders binders' =
       
    57 let
       
    58   val (alpha_name, binder_ty) = 
       
    59     case bmode of
       
    60       Lst => (@{const_name "alpha_lst"}, @{typ "atom list"})
       
    61     | Set => (@{const_name "alpha_gen"}, @{typ "atom set"})
       
    62     | Res => (@{const_name "alpha_res"}, @{typ "atom set"})
       
    63   val ty = fastype_of args
       
    64   val pair_ty = HOLogic.mk_prodT (binder_ty, ty)
       
    65   val alpha_ty = [ty, ty] ---> @{typ "bool"}
       
    66   val fv_ty = ty --> @{typ "atom set"}
       
    67   val pair_lhs = HOLogic.mk_prod (binders, args)
       
    68   val pair_rhs = HOLogic.mk_prod (binders', args')
       
    69 in
       
    70   HOLogic.exists_const @{typ perm} $ Abs ("p", @{typ perm},
       
    71     Const (alpha_name, [pair_ty, alpha_ty, fv_ty, @{typ "perm"}, pair_ty] ---> @{typ bool}) 
       
    72       $ pair_lhs $ alpha $ fv $ (Bound 0) $ pair_rhs)
       
    73 end
       
    74 
       
    75 (* for non-recursive binders we have to produce alpha_bn premises *)
       
    76 fun mk_alpha_bn_prem alpha_bn_map args args' bodies binder = 
       
    77   case binder of
       
    78     (NONE, _) => []
       
    79   | (SOME bn, i) =>
       
    80      if member (op=) bodies i then [] 
       
    81      else [the (AList.lookup (op=) alpha_bn_map bn) $ (nth args i) $ (nth args' i)]
       
    82 
       
    83 (* generat the premises for an alpha rule; mk_frees is used
       
    84    if no binders are present *)
       
    85 fun mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause =
       
    86 let
       
    87   fun mk_frees i =
       
    88     let
       
    89       val arg = nth args i
       
    90       val arg' = nth args' i
       
    91       val ty = fastype_of arg
       
    92     in
       
    93       if nth is_rec i
       
    94       then fst (the (AList.lookup (op=) alpha_map ty)) $ arg $ arg'
       
    95       else HOLogic.mk_eq (arg, arg')
       
    96     end
       
    97 
       
    98   fun mk_alpha_fv i = 
       
    99     let
       
   100       val ty = fastype_of (nth args i)
       
   101     in
       
   102       case AList.lookup (op=) alpha_map ty of
       
   103         NONE => (HOLogic.eq_const ty, supp_const ty) 
       
   104       | SOME (alpha, fv) => (alpha, fv) 
       
   105     end  
       
   106 in
       
   107   case bclause of
       
   108     BC (_, [], bodies) => map (HOLogic.mk_Trueprop o mk_frees) bodies 
       
   109   | BC (bmode, binders, bodies) => 
       
   110     let
       
   111       val (alphas, fvs) = split_list (map mk_alpha_fv bodies)
       
   112       val comp_fv = foldl1 mk_prod_fv fvs
       
   113       val comp_alpha = foldl1 mk_prod_alpha alphas
       
   114       val comp_args = foldl1 HOLogic.mk_prod (map (nth args) bodies)
       
   115       val comp_args' = foldl1 HOLogic.mk_prod (map (nth args') bodies)
       
   116       val comp_binders = mk_binders lthy bmode args binders
       
   117       val comp_binders' = mk_binders lthy bmode args' binders
       
   118       val alpha_prem = 
       
   119         mk_alpha_term bmode comp_fv comp_alpha comp_args comp_args' comp_binders comp_binders'
       
   120       val alpha_bn_prems = flat (map (mk_alpha_bn_prem alpha_bn_map args args' bodies) binders)
       
   121     in
       
   122       map HOLogic.mk_Trueprop (alpha_prem::alpha_bn_prems)
       
   123     end
       
   124 end
       
   125 
       
   126 (* produces the introduction rule for an alpha rule *)
       
   127 fun mk_alpha_intros lthy alpha_map alpha_bn_map (constr, ty, arg_tys, is_rec) bclauses = 
       
   128 let
       
   129   val arg_names = Datatype_Prop.make_tnames arg_tys
       
   130   val arg_names' = Name.variant_list arg_names arg_names
       
   131   val args = map Free (arg_names ~~ arg_tys)
       
   132   val args' = map Free (arg_names' ~~ arg_tys)
       
   133   val alpha = fst (the (AList.lookup (op=) alpha_map ty))
       
   134   val concl = HOLogic.mk_Trueprop (alpha $ list_comb (constr, args) $ list_comb (constr, args'))
       
   135   val prems = map (mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args')) bclauses
       
   136 in
       
   137   Library.foldr Logic.mk_implies (flat prems, concl)
       
   138 end
       
   139 
       
   140 (* produces the premise of an alpha-bn rule; we only need to
       
   141    treat the case special where the binding clause is empty;
       
   142    
       
   143    - if the body is not included in the bn_info, then we either
       
   144      produce an equation or an alpha-premise
       
   145 
       
   146    - if the body is included in the bn_info, then we create
       
   147      either a recursive call to alpha-bn, or no premise  *)
       
   148 fun mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args') bclause =
       
   149 let
       
   150   fun mk_alpha_bn_prem alpha_map alpha_bn_map bn_args (args, args') i = 
       
   151   let
       
   152     val arg = nth args i
       
   153     val arg' = nth args' i
       
   154     val ty = fastype_of arg
       
   155   in
       
   156     case AList.lookup (op=) bn_args i of
       
   157       NONE => (case (AList.lookup (op=) alpha_map ty) of
       
   158                  NONE =>  [HOLogic.mk_eq (arg, arg')]
       
   159                | SOME (alpha, _) => [alpha $ arg $ arg'])
       
   160     | SOME (NONE) => []
       
   161     | SOME (SOME bn) => [the (AList.lookup (op=) alpha_bn_map bn) $ arg $ arg']
       
   162   end  
       
   163 in
       
   164   case bclause of
       
   165     BC (_, [], bodies) => 
       
   166       map HOLogic.mk_Trueprop 
       
   167         (flat (map (mk_alpha_bn_prem alpha_map alpha_bn_map bn_args (args, args')) bodies))
       
   168   | _ => mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause
       
   169 end
       
   170 
       
   171 fun mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map (bn_args, (constr, _, arg_tys, is_rec)) bclauses =
       
   172 let
       
   173   val arg_names = Datatype_Prop.make_tnames arg_tys
       
   174   val arg_names' = Name.variant_list arg_names arg_names
       
   175   val args = map Free (arg_names ~~ arg_tys)
       
   176   val args' = map Free (arg_names' ~~ arg_tys)
       
   177   val alpha_bn = the (AList.lookup (op=) alpha_bn_map bn_trm)
       
   178   val concl = HOLogic.mk_Trueprop (alpha_bn $ list_comb (constr, args) $ list_comb (constr, args'))
       
   179   val prems = map (mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args')) bclauses
       
   180 in
       
   181   Library.foldr Logic.mk_implies (flat prems, concl)
       
   182 end
       
   183 
       
   184 fun mk_alpha_bn_intros lthy alpha_map alpha_bn_map constrs_info bclausesss (bn_trm, bn_n, bn_argss) = 
       
   185 let
       
   186   val nth_constrs_info = nth constrs_info bn_n
       
   187   val nth_bclausess = nth bclausesss bn_n
       
   188 in
       
   189   map2 (mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map) (bn_argss ~~ nth_constrs_info) nth_bclausess
       
   190 end
       
   191 
       
   192 fun define_raw_alpha descr sorts bn_info bclausesss fvs lthy =
       
   193 let
       
   194   val alpha_names = prefix_dt_names descr sorts "alpha_"
       
   195   val alpha_arg_tys = all_dtyps descr sorts
       
   196   val alpha_tys = map (fn ty => [ty, ty] ---> @{typ bool}) alpha_arg_tys
       
   197   val alpha_frees = map Free (alpha_names ~~ alpha_tys)
       
   198   val alpha_map = alpha_arg_tys ~~ (alpha_frees ~~ fvs)
       
   199 
       
   200   val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info)
       
   201   val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns
       
   202   val alpha_bn_names = map (prefix "alpha_") bn_names
       
   203   val alpha_bn_arg_tys = map (fn i => nth_dtyp descr sorts i) bn_tys
       
   204   val alpha_bn_tys = map (fn ty => [ty, ty] ---> @{typ "bool"}) alpha_bn_arg_tys
       
   205   val alpha_bn_frees = map Free (alpha_bn_names ~~ alpha_bn_tys)
       
   206   val alpha_bn_map = bns ~~ alpha_bn_frees
       
   207 
       
   208   val constrs_info = all_dtyp_constrs_types descr sorts
       
   209 
       
   210   val alpha_intros = map2 (map2 (mk_alpha_intros lthy alpha_map alpha_bn_map)) constrs_info bclausesss 
       
   211   val alpha_bn_intros = map (mk_alpha_bn_intros lthy alpha_map alpha_bn_map constrs_info bclausesss) bn_info
       
   212 
       
   213   val all_alpha_names = map2 (fn s => fn ty => ((Binding.name s, ty), NoSyn))
       
   214     (alpha_names @ alpha_bn_names) (alpha_tys @ alpha_bn_tys)
       
   215   val all_alpha_intros = map (pair Attrib.empty_binding) (flat alpha_intros @ flat alpha_bn_intros)
       
   216   
       
   217   val (alphas, lthy') = Inductive.add_inductive_i
       
   218      {quiet_mode = true, verbose = false, alt_name = Binding.empty,
       
   219       coind = false, no_elim = false, no_ind = false, skip_mono = true, fork_mono = false}
       
   220      all_alpha_names [] all_alpha_intros [] lthy
       
   221 
       
   222   val alpha_trms_loc = #preds alphas;
       
   223   val alpha_induct_loc = #raw_induct alphas;
       
   224   val alpha_intros_loc = #intrs alphas;
       
   225   val alpha_cases_loc = #elims alphas;
       
   226   val phi = ProofContext.export_morphism lthy' lthy;
       
   227 
       
   228   val alpha_trms = map (Morphism.term phi) alpha_trms_loc;
       
   229   val alpha_induct = Morphism.thm phi alpha_induct_loc;
       
   230   val alpha_intros = map (Morphism.thm phi) alpha_intros_loc
       
   231   val alpha_cases = map (Morphism.thm phi) alpha_cases_loc
       
   232 in
       
   233   (alpha_trms, alpha_intros, alpha_cases, alpha_induct, lthy')
       
   234 end
       
   235 
       
   236 end (* structure *)
       
   237