diff -r 45a69c9cc4cc -r 9ca7b249760e Nominal/nominal_dt_alpha.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Nominal/nominal_dt_alpha.ML Mon May 24 20:50:15 2010 +0100 @@ -0,0 +1,237 @@ +(* Title: nominal_dt_alpha.ML + Author: Cezary Kaliszyk + Author: Christian Urban + + Definitions of the alpha relations. +*) + +signature NOMINAL_DT_ALPHA = +sig + val define_raw_alpha: Datatype_Aux.descr -> (string * sort) list -> bn_info -> + bclause list list list -> term list -> Proof.context -> + term list * thm list * thm list * thm * local_theory +end + +structure Nominal_Dt_Alpha: NOMINAL_DT_ALPHA = +struct + +(* construct the compound terms for prod_fv and prod_alpha *) +fun mk_prod_fv (t1, t2) = +let + val ty1 = fastype_of t1 + val ty2 = fastype_of t2 + val resT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2) --> @{typ "atom set"} +in + Const (@{const_name "prod_fv"}, [ty1, ty2] ---> resT) $ t1 $ t2 +end + +fun mk_prod_alpha (t1, t2) = +let + val ty1 = fastype_of t1 + val ty2 = fastype_of t2 + val prodT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2) + val resT = [prodT, prodT] ---> @{typ "bool"} +in + Const (@{const_name "prod_alpha"}, [ty1, ty2] ---> resT) $ t1 $ t2 +end + +(* generates the compound binder terms *) +fun mk_binders lthy bmode args bodies = +let + fun bind_set lthy args (NONE, i) = setify lthy (nth args i) + | bind_set _ args (SOME bn, i) = bn $ (nth args i) + fun bind_lst lthy args (NONE, i) = listify lthy (nth args i) + | bind_lst _ args (SOME bn, i) = bn $ (nth args i) + + val (combine_fn, bind_fn) = + case bmode of + Lst => (mk_append, bind_lst) + | Set => (mk_union, bind_set) + | Res => (mk_union, bind_set) +in + foldl1 combine_fn (map (bind_fn lthy args) bodies) +end + +(* produces the term for an alpha with abstraction *) +fun mk_alpha_term bmode fv alpha args args' binders binders' = +let + val (alpha_name, binder_ty) = + case bmode of + Lst => (@{const_name "alpha_lst"}, @{typ "atom list"}) + | Set => (@{const_name "alpha_gen"}, @{typ "atom set"}) + | Res => (@{const_name "alpha_res"}, @{typ "atom set"}) + val ty = fastype_of args + val pair_ty = HOLogic.mk_prodT (binder_ty, ty) + val alpha_ty = [ty, ty] ---> @{typ "bool"} + val fv_ty = ty --> @{typ "atom set"} + val pair_lhs = HOLogic.mk_prod (binders, args) + val pair_rhs = HOLogic.mk_prod (binders', args') +in + HOLogic.exists_const @{typ perm} $ Abs ("p", @{typ perm}, + Const (alpha_name, [pair_ty, alpha_ty, fv_ty, @{typ "perm"}, pair_ty] ---> @{typ bool}) + $ pair_lhs $ alpha $ fv $ (Bound 0) $ pair_rhs) +end + +(* for non-recursive binders we have to produce alpha_bn premises *) +fun mk_alpha_bn_prem alpha_bn_map args args' bodies binder = + case binder of + (NONE, _) => [] + | (SOME bn, i) => + if member (op=) bodies i then [] + else [the (AList.lookup (op=) alpha_bn_map bn) $ (nth args i) $ (nth args' i)] + +(* generat the premises for an alpha rule; mk_frees is used + if no binders are present *) +fun mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause = +let + fun mk_frees i = + let + val arg = nth args i + val arg' = nth args' i + val ty = fastype_of arg + in + if nth is_rec i + then fst (the (AList.lookup (op=) alpha_map ty)) $ arg $ arg' + else HOLogic.mk_eq (arg, arg') + end + + fun mk_alpha_fv i = + let + val ty = fastype_of (nth args i) + in + case AList.lookup (op=) alpha_map ty of + NONE => (HOLogic.eq_const ty, supp_const ty) + | SOME (alpha, fv) => (alpha, fv) + end +in + case bclause of + BC (_, [], bodies) => map (HOLogic.mk_Trueprop o mk_frees) bodies + | BC (bmode, binders, bodies) => + let + val (alphas, fvs) = split_list (map mk_alpha_fv bodies) + val comp_fv = foldl1 mk_prod_fv fvs + val comp_alpha = foldl1 mk_prod_alpha alphas + val comp_args = foldl1 HOLogic.mk_prod (map (nth args) bodies) + val comp_args' = foldl1 HOLogic.mk_prod (map (nth args') bodies) + val comp_binders = mk_binders lthy bmode args binders + val comp_binders' = mk_binders lthy bmode args' binders + val alpha_prem = + mk_alpha_term bmode comp_fv comp_alpha comp_args comp_args' comp_binders comp_binders' + val alpha_bn_prems = flat (map (mk_alpha_bn_prem alpha_bn_map args args' bodies) binders) + in + map HOLogic.mk_Trueprop (alpha_prem::alpha_bn_prems) + end +end + +(* produces the introduction rule for an alpha rule *) +fun mk_alpha_intros lthy alpha_map alpha_bn_map (constr, ty, arg_tys, is_rec) bclauses = +let + val arg_names = Datatype_Prop.make_tnames arg_tys + val arg_names' = Name.variant_list arg_names arg_names + val args = map Free (arg_names ~~ arg_tys) + val args' = map Free (arg_names' ~~ arg_tys) + val alpha = fst (the (AList.lookup (op=) alpha_map ty)) + val concl = HOLogic.mk_Trueprop (alpha $ list_comb (constr, args) $ list_comb (constr, args')) + val prems = map (mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args')) bclauses +in + Library.foldr Logic.mk_implies (flat prems, concl) +end + +(* produces the premise of an alpha-bn rule; we only need to + treat the case special where the binding clause is empty; + + - if the body is not included in the bn_info, then we either + produce an equation or an alpha-premise + + - if the body is included in the bn_info, then we create + either a recursive call to alpha-bn, or no premise *) +fun mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args') bclause = +let + fun mk_alpha_bn_prem alpha_map alpha_bn_map bn_args (args, args') i = + let + val arg = nth args i + val arg' = nth args' i + val ty = fastype_of arg + in + case AList.lookup (op=) bn_args i of + NONE => (case (AList.lookup (op=) alpha_map ty) of + NONE => [HOLogic.mk_eq (arg, arg')] + | SOME (alpha, _) => [alpha $ arg $ arg']) + | SOME (NONE) => [] + | SOME (SOME bn) => [the (AList.lookup (op=) alpha_bn_map bn) $ arg $ arg'] + end +in + case bclause of + BC (_, [], bodies) => + map HOLogic.mk_Trueprop + (flat (map (mk_alpha_bn_prem alpha_map alpha_bn_map bn_args (args, args')) bodies)) + | _ => mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause +end + +fun mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map (bn_args, (constr, _, arg_tys, is_rec)) bclauses = +let + val arg_names = Datatype_Prop.make_tnames arg_tys + val arg_names' = Name.variant_list arg_names arg_names + val args = map Free (arg_names ~~ arg_tys) + val args' = map Free (arg_names' ~~ arg_tys) + val alpha_bn = the (AList.lookup (op=) alpha_bn_map bn_trm) + val concl = HOLogic.mk_Trueprop (alpha_bn $ list_comb (constr, args) $ list_comb (constr, args')) + val prems = map (mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args')) bclauses +in + Library.foldr Logic.mk_implies (flat prems, concl) +end + +fun mk_alpha_bn_intros lthy alpha_map alpha_bn_map constrs_info bclausesss (bn_trm, bn_n, bn_argss) = +let + val nth_constrs_info = nth constrs_info bn_n + val nth_bclausess = nth bclausesss bn_n +in + map2 (mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map) (bn_argss ~~ nth_constrs_info) nth_bclausess +end + +fun define_raw_alpha descr sorts bn_info bclausesss fvs lthy = +let + val alpha_names = prefix_dt_names descr sorts "alpha_" + val alpha_arg_tys = all_dtyps descr sorts + val alpha_tys = map (fn ty => [ty, ty] ---> @{typ bool}) alpha_arg_tys + val alpha_frees = map Free (alpha_names ~~ alpha_tys) + val alpha_map = alpha_arg_tys ~~ (alpha_frees ~~ fvs) + + val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info) + val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns + val alpha_bn_names = map (prefix "alpha_") bn_names + val alpha_bn_arg_tys = map (fn i => nth_dtyp descr sorts i) bn_tys + val alpha_bn_tys = map (fn ty => [ty, ty] ---> @{typ "bool"}) alpha_bn_arg_tys + val alpha_bn_frees = map Free (alpha_bn_names ~~ alpha_bn_tys) + val alpha_bn_map = bns ~~ alpha_bn_frees + + val constrs_info = all_dtyp_constrs_types descr sorts + + val alpha_intros = map2 (map2 (mk_alpha_intros lthy alpha_map alpha_bn_map)) constrs_info bclausesss + val alpha_bn_intros = map (mk_alpha_bn_intros lthy alpha_map alpha_bn_map constrs_info bclausesss) bn_info + + val all_alpha_names = map2 (fn s => fn ty => ((Binding.name s, ty), NoSyn)) + (alpha_names @ alpha_bn_names) (alpha_tys @ alpha_bn_tys) + val all_alpha_intros = map (pair Attrib.empty_binding) (flat alpha_intros @ flat alpha_bn_intros) + + val (alphas, lthy') = Inductive.add_inductive_i + {quiet_mode = true, verbose = false, alt_name = Binding.empty, + coind = false, no_elim = false, no_ind = false, skip_mono = true, fork_mono = false} + all_alpha_names [] all_alpha_intros [] lthy + + val alpha_trms_loc = #preds alphas; + val alpha_induct_loc = #raw_induct alphas; + val alpha_intros_loc = #intrs alphas; + val alpha_cases_loc = #elims alphas; + val phi = ProofContext.export_morphism lthy' lthy; + + val alpha_trms = map (Morphism.term phi) alpha_trms_loc; + val alpha_induct = Morphism.thm phi alpha_induct_loc; + val alpha_intros = map (Morphism.thm phi) alpha_intros_loc + val alpha_cases = map (Morphism.thm phi) alpha_cases_loc +in + (alpha_trms, alpha_intros, alpha_cases, alpha_induct, lthy') +end + +end (* structure *) +