|
1 theory Fv |
|
2 imports "Nominal2_Atoms" "Abs" |
|
3 begin |
|
4 |
|
5 (* Bindings are given as a list which has a length being equal |
|
6 to the length of the number of constructors. |
|
7 |
|
8 Each element is a list whose length is equal to the number |
|
9 of arguents. |
|
10 |
|
11 Every element specifies bindings of this argument given as |
|
12 a tuple: function, bound argument. |
|
13 |
|
14 Eg: |
|
15 nominal_datatype |
|
16 |
|
17 C1 |
|
18 | C2 x y z bind x in z |
|
19 | C3 x y z bind f x in z bind g y in z |
|
20 |
|
21 yields: |
|
22 [ |
|
23 [], |
|
24 [[], [], [(NONE, 0)]], |
|
25 [[], [], [(SOME (Const f), 0), (Some (Const g), 1)]]] |
|
26 |
|
27 A SOME binding has to have a function returning an atom set, |
|
28 and a NONE binding has to be on an argument that is an atom |
|
29 or an atom set. |
|
30 |
|
31 How the procedure works: |
|
32 For each of the defined datatypes, |
|
33 For each of the constructors, |
|
34 It creates a union of free variables for each argument. |
|
35 |
|
36 For an argument the free variables are the variables minus |
|
37 bound variables. |
|
38 |
|
39 The variables are: |
|
40 For an atom, a singleton set with the atom itself. |
|
41 For an atom set, the atom set itself. |
|
42 For a recursive argument, the appropriate fv function applied to it. |
|
43 (* TODO: This one is not implemented *) |
|
44 For other arguments it should be an appropriate fv function stored |
|
45 in the database. |
|
46 The bound variables are a union of results of all bindings that |
|
47 involve the given argument. For a paricular binding the result is: |
|
48 For a function applied to an argument this function with the argument. |
|
49 For an atom, a singleton set with the atom itself. |
|
50 For an atom set, the atom set itself. |
|
51 For a recursive argument, the appropriate fv function applied to it. |
|
52 (* TODO: This one is not implemented *) |
|
53 For other arguments it should be an appropriate fv function stored |
|
54 in the database. |
|
55 *) |
|
56 |
|
57 ML {* |
|
58 open Datatype_Aux; (* typ_of_dtyp, DtRec, ... *); |
|
59 (* TODO: It is the same as one in 'nominal_atoms' *) |
|
60 fun mk_atom ty = Const (@{const_name atom}, ty --> @{typ atom}); |
|
61 val noatoms = @{term "{} :: atom set"}; |
|
62 fun mk_single_atom x = HOLogic.mk_set @{typ atom} [mk_atom (type_of x) $ x]; |
|
63 fun mk_union sets = |
|
64 fold (fn a => fn b => |
|
65 if a = noatoms then b else |
|
66 if b = noatoms then a else |
|
67 HOLogic.mk_binop @{const_name union} (a, b)) (rev sets) noatoms; |
|
68 fun mk_diff a b = |
|
69 if b = noatoms then a else |
|
70 if b = a then noatoms else |
|
71 HOLogic.mk_binop @{const_name minus} (a, b); |
|
72 fun mk_atoms t = |
|
73 let |
|
74 val ty = fastype_of t; |
|
75 val atom_ty = HOLogic.dest_setT ty --> @{typ atom}; |
|
76 val img_ty = atom_ty --> ty --> @{typ "atom set"}; |
|
77 in |
|
78 (Const (@{const_name image}, img_ty) $ Const (@{const_name atom}, atom_ty) $ t) |
|
79 end; |
|
80 (* Copy from Term *) |
|
81 fun is_funtype (Type ("fun", [_, _])) = true |
|
82 | is_funtype _ = false; |
|
83 (* Similar to one in USyntax *) |
|
84 fun mk_pair (fst, snd) = |
|
85 let val ty1 = fastype_of fst |
|
86 val ty2 = fastype_of snd |
|
87 val c = HOLogic.pair_const ty1 ty2 |
|
88 in c $ fst $ snd |
|
89 end; |
|
90 |
|
91 *} |
|
92 |
|
93 (* TODO: Notice datatypes without bindings and replace alpha with equality *) |
|
94 ML {* |
|
95 (* Currently needs just one full_tname to access Datatype *) |
|
96 fun define_fv_alpha full_tname bindsall lthy = |
|
97 let |
|
98 val thy = ProofContext.theory_of lthy; |
|
99 val {descr, ...} = Datatype.the_info thy full_tname; |
|
100 val sorts = []; (* TODO *) |
|
101 fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i); |
|
102 val fv_names = Datatype_Prop.indexify_names (map (fn (i, _) => |
|
103 "fv_" ^ name_of_typ (nth_dtyp i)) descr); |
|
104 val fv_types = map (fn (i, _) => nth_dtyp i --> @{typ "atom set"}) descr; |
|
105 val fv_frees = map Free (fv_names ~~ fv_types); |
|
106 val alpha_names = Datatype_Prop.indexify_names (map (fn (i, _) => |
|
107 "alpha_" ^ name_of_typ (nth_dtyp i)) descr); |
|
108 val alpha_types = map (fn (i, _) => nth_dtyp i --> nth_dtyp i --> @{typ bool}) descr; |
|
109 val alpha_frees = map Free (alpha_names ~~ alpha_types); |
|
110 fun fv_alpha_constr i (cname, dts) bindcs = |
|
111 let |
|
112 val Ts = map (typ_of_dtyp descr sorts) dts; |
|
113 val names = Name.variant_list ["pi"] (Datatype_Prop.make_tnames Ts); |
|
114 val args = map Free (names ~~ Ts); |
|
115 val names2 = Name.variant_list ("pi" :: names) (Datatype_Prop.make_tnames Ts); |
|
116 val args2 = map Free (names2 ~~ Ts); |
|
117 val c = Const (cname, Ts ---> (nth_dtyp i)); |
|
118 val fv_c = nth fv_frees i; |
|
119 val alpha = nth alpha_frees i; |
|
120 fun fv_bind args (NONE, i) = |
|
121 if is_rec_type (nth dts i) then (nth fv_frees (body_index (nth dts i))) $ (nth args i) else |
|
122 (* TODO we assume that all can be 'atomized' *) |
|
123 if (is_funtype o fastype_of) (nth args i) then mk_atoms (nth args i) else |
|
124 mk_single_atom (nth args i) |
|
125 | fv_bind args (SOME f, i) = f $ (nth args i); |
|
126 fun fv_arg ((dt, x), bindxs) = |
|
127 let |
|
128 val arg = |
|
129 if is_rec_type dt then nth fv_frees (body_index dt) $ x else |
|
130 (* TODO: we just assume everything can be 'atomized' *) |
|
131 if (is_funtype o fastype_of) x then mk_atoms x else |
|
132 HOLogic.mk_set @{typ atom} [mk_atom (fastype_of x) $ x] |
|
133 val sub = mk_union (map (fv_bind args) bindxs) |
|
134 in |
|
135 mk_diff arg sub |
|
136 end; |
|
137 val fv_eq = HOLogic.mk_Trueprop (HOLogic.mk_eq |
|
138 (fv_c $ list_comb (c, args), mk_union (map fv_arg (dts ~~ args ~~ bindcs)))) |
|
139 val alpha_rhs = |
|
140 HOLogic.mk_Trueprop (alpha $ (list_comb (c, args)) $ (list_comb (c, args2))); |
|
141 fun alpha_arg ((dt, bindxs), (arg, arg2)) = |
|
142 if bindxs = [] then ( |
|
143 if is_rec_type dt then (nth alpha_frees (body_index dt) $ arg $ arg2) |
|
144 else (HOLogic.mk_eq (arg, arg2))) |
|
145 else |
|
146 if is_rec_type dt then let |
|
147 (* THE HARD CASE *) |
|
148 val lhs_binds = mk_union (map (fv_bind args) bindxs); |
|
149 val lhs = mk_pair (lhs_binds, arg); |
|
150 val rhs_binds = mk_union (map (fv_bind args2) bindxs); |
|
151 val rhs = mk_pair (rhs_binds, arg2); |
|
152 val alpha = nth alpha_frees (body_index dt); |
|
153 val fv = nth fv_frees (body_index dt); |
|
154 val alpha_gen_pre = Const (@{const_name alpha_gen}, dummyT) $ lhs $ alpha $ fv $ (Free ("pi", @{typ perm})) $ rhs; |
|
155 val alpha_gen_t = Syntax.check_term lthy alpha_gen_pre |
|
156 in |
|
157 HOLogic.mk_exists ("pi", @{typ perm}, alpha_gen_t) |
|
158 (* TODO Add some test that is makes sense *) |
|
159 end else @{term "True"} |
|
160 val alpha_lhss = map (HOLogic.mk_Trueprop o alpha_arg) (dts ~~ bindcs ~~ (args ~~ args2)) |
|
161 val alpha_eq = Logic.list_implies (alpha_lhss, alpha_rhs) |
|
162 in |
|
163 (fv_eq, alpha_eq) |
|
164 end; |
|
165 fun fv_alpha_eq (i, (_, _, constrs)) binds = map2 (fv_alpha_constr i) constrs binds; |
|
166 val (fv_eqs, alpha_eqs) = split_list (flat (map2 fv_alpha_eq descr bindsall)) |
|
167 val add_binds = map (fn x => (Attrib.empty_binding, x)) |
|
168 val (fvs, lthy') = (Primrec.add_primrec |
|
169 (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names) (add_binds fv_eqs) lthy) |
|
170 val (alphas, lthy'') = (Inductive.add_inductive_i |
|
171 {quiet_mode = false, verbose = true, alt_name = Binding.empty, |
|
172 coind = false, no_elim = false, no_ind = false, skip_mono = true, fork_mono = false} |
|
173 (map2 (fn x => fn y => ((Binding.name x, y), NoSyn)) alpha_names alpha_types) [] |
|
174 (add_binds alpha_eqs) [] lthy') |
|
175 in |
|
176 ((fvs, alphas), lthy'') |
|
177 end |
|
178 *} |
|
179 |
|
180 (* tests |
|
181 atom_decl name |
|
182 |
|
183 datatype ty = |
|
184 Var "name set" |
|
185 |
|
186 ML {* Syntax.check_term @{context} (mk_atoms @{term "a :: name set"}) *} |
|
187 |
|
188 local_setup {* define_fv_alpha "Fv.ty" [[[[]]]] *} |
|
189 print_theorems |
|
190 |
|
191 |
|
192 datatype rtrm1 = |
|
193 rVr1 "name" |
|
194 | rAp1 "rtrm1" "rtrm1" |
|
195 | rLm1 "name" "rtrm1" --"name is bound in trm1" |
|
196 | rLt1 "bp" "rtrm1" "rtrm1" --"all variables in bp are bound in the 2nd trm1" |
|
197 and bp = |
|
198 BUnit |
|
199 | BVr "name" |
|
200 | BPr "bp" "bp" |
|
201 |
|
202 (* to be given by the user *) |
|
203 |
|
204 primrec |
|
205 bv1 |
|
206 where |
|
207 "bv1 (BUnit) = {}" |
|
208 | "bv1 (BVr x) = {atom x}" |
|
209 | "bv1 (BPr bp1 bp2) = (bv1 bp1) \<union> (bv1 bp1)" |
|
210 |
|
211 setup {* snd o define_raw_perms ["rtrm1", "bp"] ["Fv.rtrm1", "Fv.bp"] *} |
|
212 |
|
213 local_setup {* define_fv_alpha "Fv.rtrm1" |
|
214 [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term bv1}, 0)], [], [(SOME @{term bv1}, 0)]]], |
|
215 [[], [[]], [[], []]]] *} |
|
216 print_theorems |
|
217 *) |
|
218 |
|
219 |
|
220 ML {* |
|
221 fun alpha_inj_tac dist_inj intrs elims = |
|
222 SOLVED' (asm_full_simp_tac (HOL_ss addsimps intrs)) ORELSE' |
|
223 (rtac @{thm iffI} THEN' RANGE [ |
|
224 (eresolve_tac elims THEN_ALL_NEW |
|
225 asm_full_simp_tac (HOL_ss addsimps dist_inj) |
|
226 ), |
|
227 asm_full_simp_tac (HOL_ss addsimps intrs)]) |
|
228 *} |
|
229 |
|
230 ML {* |
|
231 fun build_alpha_inj_gl thm = |
|
232 let |
|
233 val prop = prop_of thm; |
|
234 val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop); |
|
235 val hyps = map HOLogic.dest_Trueprop (Logic.strip_imp_prems prop); |
|
236 fun list_conj l = foldr1 HOLogic.mk_conj l; |
|
237 in |
|
238 if hyps = [] then concl |
|
239 else HOLogic.mk_eq (concl, list_conj hyps) |
|
240 end; |
|
241 *} |
|
242 |
|
243 ML {* |
|
244 fun build_alpha_inj intrs dist_inj elims ctxt = |
|
245 let |
|
246 val ((_, thms_imp), ctxt') = Variable.import false intrs ctxt; |
|
247 val gls = map (HOLogic.mk_Trueprop o build_alpha_inj_gl) thms_imp; |
|
248 fun tac _ = alpha_inj_tac dist_inj intrs elims 1; |
|
249 val thms = map (fn gl => Goal.prove ctxt' [] [] gl tac) gls; |
|
250 in |
|
251 Variable.export ctxt' ctxt thms |
|
252 end |
|
253 *} |
|
254 |
|
255 ML {* |
|
256 fun build_alpha_refl_gl alphas (x, y, z) = |
|
257 let |
|
258 fun build_alpha alpha = |
|
259 let |
|
260 val ty = domain_type (fastype_of alpha); |
|
261 val var = Free(x, ty); |
|
262 val var2 = Free(y, ty); |
|
263 val var3 = Free(z, ty); |
|
264 val symp = HOLogic.mk_imp (alpha $ var $ var2, alpha $ var2 $ var); |
|
265 val transp = HOLogic.mk_imp (alpha $ var $ var2, |
|
266 HOLogic.mk_all (z, ty, |
|
267 HOLogic.mk_imp (alpha $ var2 $ var3, alpha $ var $ var3))) |
|
268 in |
|
269 ((alpha $ var $ var), (symp, transp)) |
|
270 end; |
|
271 val (refl_eqs, eqs) = split_list (map build_alpha alphas) |
|
272 val (sym_eqs, trans_eqs) = split_list eqs |
|
273 fun conj l = @{term Trueprop} $ foldr1 HOLogic.mk_conj l |
|
274 in |
|
275 (conj refl_eqs, (conj sym_eqs, conj trans_eqs)) |
|
276 end |
|
277 *} |
|
278 |
|
279 ML {* |
|
280 fun reflp_tac induct inj = |
|
281 rtac induct THEN_ALL_NEW |
|
282 asm_full_simp_tac (HOL_ss addsimps inj) THEN_ALL_NEW |
|
283 TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI) THEN_ALL_NEW |
|
284 (rtac @{thm exI[of _ "0 :: perm"]} THEN' |
|
285 asm_full_simp_tac (HOL_ss addsimps |
|
286 @{thms alpha_gen fresh_star_def fresh_zero_perm permute_zero ball_triv})) |
|
287 *} |
|
288 |
|
289 ML {* |
|
290 fun symp_tac induct inj eqvt = |
|
291 ((rtac @{thm impI} THEN' etac induct) ORELSE' rtac induct) THEN_ALL_NEW |
|
292 asm_full_simp_tac (HOL_ss addsimps inj) THEN_ALL_NEW |
|
293 TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI) THEN_ALL_NEW |
|
294 (etac @{thm alpha_gen_compose_sym} THEN' eresolve_tac eqvt) |
|
295 *} |
|
296 |
|
297 ML {* |
|
298 fun imp_elim_tac case_rules = |
|
299 Subgoal.FOCUS (fn {concl, context, ...} => |
|
300 case term_of concl of |
|
301 _ $ (_ $ asm $ _) => |
|
302 let |
|
303 fun filter_fn case_rule = ( |
|
304 case Logic.strip_assums_hyp (prop_of case_rule) of |
|
305 ((_ $ asmc) :: _) => |
|
306 let |
|
307 val thy = ProofContext.theory_of context |
|
308 in |
|
309 Pattern.matches thy (asmc, asm) |
|
310 end |
|
311 | _ => false) |
|
312 val matching_rules = filter filter_fn case_rules |
|
313 in |
|
314 (rtac impI THEN' rotate_tac (~1) THEN' eresolve_tac matching_rules) 1 |
|
315 end |
|
316 | _ => no_tac |
|
317 ) |
|
318 *} |
|
319 |
|
320 ML {* |
|
321 fun transp_tac ctxt induct alpha_inj term_inj distinct cases eqvt = |
|
322 ((rtac impI THEN' etac induct) ORELSE' rtac induct) THEN_ALL_NEW |
|
323 (TRY o rtac allI THEN' imp_elim_tac cases ctxt) THEN_ALL_NEW |
|
324 ( |
|
325 asm_full_simp_tac (HOL_ss addsimps alpha_inj @ term_inj @ distinct) THEN' |
|
326 TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI) THEN_ALL_NEW |
|
327 (etac @{thm alpha_gen_compose_trans} THEN' RANGE [atac, eresolve_tac eqvt]) |
|
328 ) |
|
329 *} |
|
330 |
|
331 lemma transp_aux: |
|
332 "(\<And>xa ya. R xa ya \<longrightarrow> (\<forall>z. R ya z \<longrightarrow> R xa z)) \<Longrightarrow> transp R" |
|
333 unfolding transp_def |
|
334 by blast |
|
335 |
|
336 ML {* |
|
337 fun equivp_tac reflps symps transps = |
|
338 simp_tac (HOL_ss addsimps @{thms equivp_reflp_symp_transp reflp_def symp_def}) |
|
339 THEN' rtac conjI THEN' rtac allI THEN' |
|
340 resolve_tac reflps THEN' |
|
341 rtac conjI THEN' rtac allI THEN' rtac allI THEN' |
|
342 resolve_tac symps THEN' |
|
343 rtac @{thm transp_aux} THEN' resolve_tac transps |
|
344 *} |
|
345 |
|
346 ML {* |
|
347 fun build_equivps alphas term_induct alpha_induct term_inj alpha_inj distinct cases eqvt ctxt = |
|
348 let |
|
349 val ([x, y, z], ctxt') = Variable.variant_fixes ["x","y","z"] ctxt; |
|
350 val (reflg, (symg, transg)) = build_alpha_refl_gl alphas (x, y, z) |
|
351 fun reflp_tac' _ = reflp_tac term_induct alpha_inj 1; |
|
352 fun symp_tac' _ = symp_tac alpha_induct alpha_inj eqvt 1; |
|
353 fun transp_tac' _ = transp_tac ctxt alpha_induct alpha_inj term_inj distinct cases eqvt 1; |
|
354 val reflt = Goal.prove ctxt' [] [] reflg reflp_tac'; |
|
355 val symt = Goal.prove ctxt' [] [] symg symp_tac'; |
|
356 val transt = Goal.prove ctxt' [] [] transg transp_tac'; |
|
357 val [refltg, symtg, transtg] = Variable.export ctxt' ctxt [reflt, symt, transt] |
|
358 val reflts = HOLogic.conj_elims refltg |
|
359 val symts = HOLogic.conj_elims symtg |
|
360 val transts = HOLogic.conj_elims transtg |
|
361 fun equivp alpha = |
|
362 let |
|
363 val equivp = Const (@{const_name equivp}, fastype_of alpha --> @{typ bool}) |
|
364 val goal = @{term Trueprop} $ (equivp $ alpha) |
|
365 fun tac _ = equivp_tac reflts symts transts 1 |
|
366 in |
|
367 Goal.prove ctxt [] [] goal tac |
|
368 end |
|
369 in |
|
370 map equivp alphas |
|
371 end |
|
372 *} |
|
373 |
|
374 (* |
|
375 Tests: |
|
376 prove alpha1_reflp_aux: {* fst (build_alpha_refl_gl [@{term alpha_rtrm1}, @{term alpha_bp}] ("x","y","z")) *} |
|
377 by (tactic {* reflp_tac @{thm rtrm1_bp.induct} @{thms alpha1_inj} 1 *}) |
|
378 |
|
379 prove alpha1_symp_aux: {* (fst o snd) (build_alpha_refl_gl [@{term alpha_rtrm1}, @{term alpha_bp}] ("x","y","z")) *} |
|
380 by (tactic {* symp_tac @{thm alpha_rtrm1_alpha_bp.induct} @{thms alpha1_inj} @{thms alpha1_eqvt} 1 *}) |
|
381 |
|
382 prove alpha1_transp_aux: {* (snd o snd) (build_alpha_refl_gl [@{term alpha_rtrm1}, @{term alpha_bp}] ("x","y","z")) *} |
|
383 by (tactic {* transp_tac @{context} @{thm alpha_rtrm1_alpha_bp.induct} @{thms alpha1_inj} @{thms rtrm1.inject bp.inject} @{thms rtrm1.distinct bp.distinct} @{thms alpha_rtrm1.cases alpha_bp.cases} @{thms alpha1_eqvt} 1 *}) |
|
384 |
|
385 lemma alpha1_equivp: |
|
386 "equivp alpha_rtrm1" |
|
387 "equivp alpha_bp" |
|
388 apply (tactic {* |
|
389 (simp_tac (HOL_ss addsimps @{thms equivp_reflp_symp_transp reflp_def symp_def}) |
|
390 THEN' rtac @{thm conjI} THEN' rtac @{thm allI} THEN' |
|
391 resolve_tac (HOLogic.conj_elims @{thm alpha1_reflp_aux}) |
|
392 THEN' rtac @{thm conjI} THEN' rtac @{thm allI} THEN' rtac @{thm allI} THEN' |
|
393 resolve_tac (HOLogic.conj_elims @{thm alpha1_symp_aux}) THEN' rtac @{thm transp_aux} |
|
394 THEN' resolve_tac (HOLogic.conj_elims @{thm alpha1_transp_aux}) |
|
395 ) |
|
396 1 *}) |
|
397 done*) |
|
398 |
|
399 end |