Nominal/Fv.thy
changeset 1258 7d8949da7d99
parent 1221 526fad251a8e
child 1277 6eacf60ce41d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Fv.thy	Thu Feb 25 07:48:33 2010 +0100
@@ -0,0 +1,399 @@
+theory Fv
+imports "Nominal2_Atoms" "Abs"
+begin
+
+(* Bindings are given as a list which has a length being equal
+   to the length of the number of constructors.
+
+   Each element is a list whose length is equal to the number
+   of arguents.
+
+   Every element specifies bindings of this argument given as
+   a tuple: function, bound argument.
+
+  Eg:
+nominal_datatype
+
+   C1
+ | C2 x y z bind x in z
+ | C3 x y z bind f x in z bind g y in z
+
+yields:
+[
+ [],
+ [[], [], [(NONE, 0)]],
+ [[], [], [(SOME (Const f), 0), (Some (Const g), 1)]]]
+
+A SOME binding has to have a function returning an atom set,
+and a NONE binding has to be on an argument that is an atom
+or an atom set.
+
+How the procedure works:
+  For each of the defined datatypes,
+  For each of the constructors,
+  It creates a union of free variables for each argument.
+
+  For an argument the free variables are the variables minus
+  bound variables.
+
+  The variables are:
+    For an atom, a singleton set with the atom itself.
+    For an atom set, the atom set itself.
+    For a recursive argument, the appropriate fv function applied to it.
+    (* TODO: This one is not implemented *)
+    For other arguments it should be an appropriate fv function stored
+      in the database.
+  The bound variables are a union of results of all bindings that
+  involve the given argument. For a paricular binding the result is:
+    For a function applied to an argument this function with the argument.
+    For an atom, a singleton set with the atom itself.
+    For an atom set, the atom set itself.
+    For a recursive argument, the appropriate fv function applied to it.
+    (* TODO: This one is not implemented *)
+    For other arguments it should be an appropriate fv function stored
+      in the database.
+*)
+
+ML {*
+  open Datatype_Aux; (* typ_of_dtyp, DtRec, ... *);
+  (* TODO: It is the same as one in 'nominal_atoms' *)
+  fun mk_atom ty = Const (@{const_name atom}, ty --> @{typ atom});
+  val noatoms = @{term "{} :: atom set"};
+  fun mk_single_atom x = HOLogic.mk_set @{typ atom} [mk_atom (type_of x) $ x];
+  fun mk_union sets =
+    fold (fn a => fn b =>
+      if a = noatoms then b else
+      if b = noatoms then a else
+      HOLogic.mk_binop @{const_name union} (a, b)) (rev sets) noatoms;
+  fun mk_diff a b =
+    if b = noatoms then a else
+    if b = a then noatoms else
+    HOLogic.mk_binop @{const_name minus} (a, b);
+  fun mk_atoms t =
+    let
+      val ty = fastype_of t;
+      val atom_ty = HOLogic.dest_setT ty --> @{typ atom};
+      val img_ty = atom_ty --> ty --> @{typ "atom set"};
+    in
+      (Const (@{const_name image}, img_ty) $ Const (@{const_name atom}, atom_ty) $ t)
+    end;
+  (* Copy from Term *)
+  fun is_funtype (Type ("fun", [_, _])) = true
+    | is_funtype _ = false;
+  (* Similar to one in USyntax *)
+  fun mk_pair (fst, snd) =
+    let val ty1 = fastype_of fst
+      val ty2 = fastype_of snd
+      val c = HOLogic.pair_const ty1 ty2
+    in c $ fst $ snd
+    end;
+
+*}
+
+(* TODO: Notice datatypes without bindings and replace alpha with equality *)
+ML {*
+(* Currently needs just one full_tname to access Datatype *)
+fun define_fv_alpha full_tname bindsall lthy =
+let
+  val thy = ProofContext.theory_of lthy;
+  val {descr, ...} = Datatype.the_info thy full_tname;
+  val sorts = []; (* TODO *)
+  fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
+  val fv_names = Datatype_Prop.indexify_names (map (fn (i, _) =>
+    "fv_" ^ name_of_typ (nth_dtyp i)) descr);
+  val fv_types = map (fn (i, _) => nth_dtyp i --> @{typ "atom set"}) descr;
+  val fv_frees = map Free (fv_names ~~ fv_types);
+  val alpha_names = Datatype_Prop.indexify_names (map (fn (i, _) =>
+    "alpha_" ^ name_of_typ (nth_dtyp i)) descr);
+  val alpha_types = map (fn (i, _) => nth_dtyp i --> nth_dtyp i --> @{typ bool}) descr;
+  val alpha_frees = map Free (alpha_names ~~ alpha_types);
+  fun fv_alpha_constr i (cname, dts) bindcs =
+    let
+      val Ts = map (typ_of_dtyp descr sorts) dts;
+      val names = Name.variant_list ["pi"] (Datatype_Prop.make_tnames Ts);
+      val args = map Free (names ~~ Ts);
+      val names2 = Name.variant_list ("pi" :: names) (Datatype_Prop.make_tnames Ts);
+      val args2 = map Free (names2 ~~ Ts);
+      val c = Const (cname, Ts ---> (nth_dtyp i));
+      val fv_c = nth fv_frees i;
+      val alpha = nth alpha_frees i;
+      fun fv_bind args (NONE, i) =
+            if is_rec_type (nth dts i) then (nth fv_frees (body_index (nth dts i))) $ (nth args i) else
+            (* TODO we assume that all can be 'atomized' *)
+            if (is_funtype o fastype_of) (nth args i) then mk_atoms (nth args i) else
+            mk_single_atom (nth args i)
+        | fv_bind args (SOME f, i) = f $ (nth args i);
+      fun fv_arg ((dt, x), bindxs) =
+        let
+          val arg =
+            if is_rec_type dt then nth fv_frees (body_index dt) $ x else
+            (* TODO: we just assume everything can be 'atomized' *)
+            if (is_funtype o fastype_of) x then mk_atoms x else
+            HOLogic.mk_set @{typ atom} [mk_atom (fastype_of x) $ x]
+          val sub = mk_union (map (fv_bind args) bindxs)
+        in
+          mk_diff arg sub
+        end;
+      val fv_eq = HOLogic.mk_Trueprop (HOLogic.mk_eq
+        (fv_c $ list_comb (c, args), mk_union (map fv_arg (dts ~~ args ~~ bindcs))))
+      val alpha_rhs =
+        HOLogic.mk_Trueprop (alpha $ (list_comb (c, args)) $ (list_comb (c, args2)));
+      fun alpha_arg ((dt, bindxs), (arg, arg2)) =
+        if bindxs = [] then (
+          if is_rec_type dt then (nth alpha_frees (body_index dt) $ arg $ arg2)
+          else (HOLogic.mk_eq (arg, arg2)))
+        else
+          if is_rec_type dt then let
+            (* THE HARD CASE *)
+            val lhs_binds = mk_union (map (fv_bind args) bindxs);
+            val lhs = mk_pair (lhs_binds, arg);
+            val rhs_binds = mk_union (map (fv_bind args2) bindxs);
+            val rhs = mk_pair (rhs_binds, arg2);
+            val alpha = nth alpha_frees (body_index dt);
+            val fv = nth fv_frees (body_index dt);
+            val alpha_gen_pre = Const (@{const_name alpha_gen}, dummyT) $ lhs $ alpha $ fv $ (Free ("pi", @{typ perm})) $ rhs;
+            val alpha_gen_t = Syntax.check_term lthy alpha_gen_pre
+          in
+            HOLogic.mk_exists ("pi", @{typ perm}, alpha_gen_t)
+          (* TODO Add some test that is makes sense *)
+          end else @{term "True"}
+      val alpha_lhss = map (HOLogic.mk_Trueprop o alpha_arg) (dts ~~ bindcs ~~ (args ~~ args2))
+      val alpha_eq = Logic.list_implies (alpha_lhss, alpha_rhs)
+    in
+      (fv_eq, alpha_eq)
+    end;
+  fun fv_alpha_eq (i, (_, _, constrs)) binds = map2 (fv_alpha_constr i) constrs binds;
+  val (fv_eqs, alpha_eqs) = split_list (flat (map2 fv_alpha_eq descr bindsall))
+  val add_binds = map (fn x => (Attrib.empty_binding, x))
+  val (fvs, lthy') = (Primrec.add_primrec
+    (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names) (add_binds fv_eqs) lthy)
+  val (alphas, lthy'') = (Inductive.add_inductive_i
+     {quiet_mode = false, verbose = true, alt_name = Binding.empty,
+      coind = false, no_elim = false, no_ind = false, skip_mono = true, fork_mono = false}
+     (map2 (fn x => fn y => ((Binding.name x, y), NoSyn)) alpha_names alpha_types) []
+     (add_binds alpha_eqs) [] lthy')
+in
+  ((fvs, alphas), lthy'')
+end
+*}
+
+(* tests
+atom_decl name
+
+datatype ty =
+  Var "name set"
+
+ML {* Syntax.check_term @{context} (mk_atoms @{term "a :: name set"}) *}
+
+local_setup {* define_fv_alpha "Fv.ty" [[[[]]]] *}
+print_theorems
+
+
+datatype rtrm1 =
+  rVr1 "name"
+| rAp1 "rtrm1" "rtrm1"
+| rLm1 "name" "rtrm1"        --"name is bound in trm1"
+| rLt1 "bp" "rtrm1" "rtrm1"   --"all variables in bp are bound in the 2nd trm1"
+and bp =
+  BUnit
+| BVr "name"
+| BPr "bp" "bp"
+
+(* to be given by the user *)
+
+primrec 
+  bv1
+where
+  "bv1 (BUnit) = {}"
+| "bv1 (BVr x) = {atom x}"
+| "bv1 (BPr bp1 bp2) = (bv1 bp1) \<union> (bv1 bp1)"
+
+setup {* snd o define_raw_perms ["rtrm1", "bp"] ["Fv.rtrm1", "Fv.bp"] *}
+
+local_setup {* define_fv_alpha "Fv.rtrm1"
+  [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term bv1}, 0)], [], [(SOME @{term bv1}, 0)]]],
+   [[], [[]], [[], []]]] *}
+print_theorems
+*)
+
+
+ML {*
+fun alpha_inj_tac dist_inj intrs elims =
+  SOLVED' (asm_full_simp_tac (HOL_ss addsimps intrs)) ORELSE'
+  (rtac @{thm iffI} THEN' RANGE [
+     (eresolve_tac elims THEN_ALL_NEW
+       asm_full_simp_tac (HOL_ss addsimps dist_inj)
+     ),
+     asm_full_simp_tac (HOL_ss addsimps intrs)])
+*}
+
+ML {*
+fun build_alpha_inj_gl thm =
+  let
+    val prop = prop_of thm;
+    val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop);
+    val hyps = map HOLogic.dest_Trueprop (Logic.strip_imp_prems prop);
+    fun list_conj l = foldr1 HOLogic.mk_conj l;
+  in
+    if hyps = [] then concl
+    else HOLogic.mk_eq (concl, list_conj hyps)
+  end;
+*}
+
+ML {*
+fun build_alpha_inj intrs dist_inj elims ctxt =
+let
+  val ((_, thms_imp), ctxt') = Variable.import false intrs ctxt;
+  val gls = map (HOLogic.mk_Trueprop o build_alpha_inj_gl) thms_imp;
+  fun tac _ = alpha_inj_tac dist_inj intrs elims 1;
+  val thms = map (fn gl => Goal.prove ctxt' [] [] gl tac) gls;
+in
+  Variable.export ctxt' ctxt thms
+end
+*}
+
+ML {*
+fun build_alpha_refl_gl alphas (x, y, z) =
+let
+  fun build_alpha alpha =
+    let
+      val ty = domain_type (fastype_of alpha);
+      val var = Free(x, ty);
+      val var2 = Free(y, ty);
+      val var3 = Free(z, ty);
+      val symp = HOLogic.mk_imp (alpha $ var $ var2, alpha $ var2 $ var);
+      val transp = HOLogic.mk_imp (alpha $ var $ var2,
+        HOLogic.mk_all (z, ty,
+          HOLogic.mk_imp (alpha $ var2 $ var3, alpha $ var $ var3)))
+    in
+      ((alpha $ var $ var), (symp, transp))
+    end;
+  val (refl_eqs, eqs) = split_list (map build_alpha alphas)
+  val (sym_eqs, trans_eqs) = split_list eqs
+  fun conj l = @{term Trueprop} $ foldr1 HOLogic.mk_conj l
+in
+  (conj refl_eqs, (conj sym_eqs, conj trans_eqs))
+end
+*}
+
+ML {*
+fun reflp_tac induct inj =
+  rtac induct THEN_ALL_NEW
+  asm_full_simp_tac (HOL_ss addsimps inj) THEN_ALL_NEW
+  TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI) THEN_ALL_NEW
+  (rtac @{thm exI[of _ "0 :: perm"]} THEN'
+   asm_full_simp_tac (HOL_ss addsimps
+     @{thms alpha_gen fresh_star_def fresh_zero_perm permute_zero ball_triv}))
+*}
+
+ML {*
+fun symp_tac induct inj eqvt =
+  ((rtac @{thm impI} THEN' etac induct) ORELSE' rtac induct) THEN_ALL_NEW
+  asm_full_simp_tac (HOL_ss addsimps inj) THEN_ALL_NEW
+  TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI) THEN_ALL_NEW
+  (etac @{thm alpha_gen_compose_sym} THEN' eresolve_tac eqvt)
+*}
+
+ML {*
+fun imp_elim_tac case_rules =
+  Subgoal.FOCUS (fn {concl, context, ...} =>
+    case term_of concl of
+      _ $ (_ $ asm $ _) =>
+        let
+          fun filter_fn case_rule = (
+            case Logic.strip_assums_hyp (prop_of case_rule) of
+              ((_ $ asmc) :: _) =>
+                let
+                  val thy = ProofContext.theory_of context
+                in
+                  Pattern.matches thy (asmc, asm)
+                end
+            | _ => false)
+          val matching_rules = filter filter_fn case_rules
+        in
+         (rtac impI THEN' rotate_tac (~1) THEN' eresolve_tac matching_rules) 1
+        end
+    | _ => no_tac
+  )
+*}
+
+ML {*
+fun transp_tac ctxt induct alpha_inj term_inj distinct cases eqvt =
+  ((rtac impI THEN' etac induct) ORELSE' rtac induct) THEN_ALL_NEW
+  (TRY o rtac allI THEN' imp_elim_tac cases ctxt) THEN_ALL_NEW
+  (
+    asm_full_simp_tac (HOL_ss addsimps alpha_inj @ term_inj @ distinct) THEN'
+    TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI) THEN_ALL_NEW
+    (etac @{thm alpha_gen_compose_trans} THEN' RANGE [atac, eresolve_tac eqvt])
+  )
+*}
+
+lemma transp_aux:
+  "(\<And>xa ya. R xa ya \<longrightarrow> (\<forall>z. R ya z \<longrightarrow> R xa z)) \<Longrightarrow> transp R"
+  unfolding transp_def
+  by blast
+
+ML {*
+fun equivp_tac reflps symps transps =
+  simp_tac (HOL_ss addsimps @{thms equivp_reflp_symp_transp reflp_def symp_def})
+  THEN' rtac conjI THEN' rtac allI THEN'
+  resolve_tac reflps THEN'
+  rtac conjI THEN' rtac allI THEN' rtac allI THEN'
+  resolve_tac symps THEN'
+  rtac @{thm transp_aux} THEN' resolve_tac transps
+*}
+
+ML {*
+fun build_equivps alphas term_induct alpha_induct term_inj alpha_inj distinct cases eqvt ctxt =
+let
+  val ([x, y, z], ctxt') = Variable.variant_fixes ["x","y","z"] ctxt;
+  val (reflg, (symg, transg)) = build_alpha_refl_gl alphas (x, y, z)
+  fun reflp_tac' _ = reflp_tac term_induct alpha_inj 1;
+  fun symp_tac' _ = symp_tac alpha_induct alpha_inj eqvt 1;
+  fun transp_tac' _ = transp_tac ctxt alpha_induct alpha_inj term_inj distinct cases eqvt 1;
+  val reflt = Goal.prove ctxt' [] [] reflg reflp_tac';
+  val symt = Goal.prove ctxt' [] [] symg symp_tac';
+  val transt = Goal.prove ctxt' [] [] transg transp_tac';
+  val [refltg, symtg, transtg] = Variable.export ctxt' ctxt [reflt, symt, transt]
+  val reflts = HOLogic.conj_elims refltg
+  val symts = HOLogic.conj_elims symtg
+  val transts = HOLogic.conj_elims transtg
+  fun equivp alpha =
+    let
+      val equivp = Const (@{const_name equivp}, fastype_of alpha --> @{typ bool})
+      val goal = @{term Trueprop} $ (equivp $ alpha)
+      fun tac _ = equivp_tac reflts symts transts 1
+    in
+      Goal.prove ctxt [] [] goal tac
+    end
+in
+  map equivp alphas
+end
+*}
+
+(*
+Tests:
+prove alpha1_reflp_aux: {* fst (build_alpha_refl_gl [@{term alpha_rtrm1}, @{term alpha_bp}] ("x","y","z")) *}
+by (tactic {* reflp_tac @{thm rtrm1_bp.induct} @{thms alpha1_inj} 1 *})
+
+prove alpha1_symp_aux: {* (fst o snd) (build_alpha_refl_gl [@{term alpha_rtrm1}, @{term alpha_bp}] ("x","y","z")) *}
+by (tactic {* symp_tac @{thm alpha_rtrm1_alpha_bp.induct} @{thms alpha1_inj} @{thms alpha1_eqvt} 1 *})
+
+prove alpha1_transp_aux: {* (snd o snd) (build_alpha_refl_gl [@{term alpha_rtrm1}, @{term alpha_bp}] ("x","y","z")) *}
+by (tactic {* transp_tac @{context} @{thm alpha_rtrm1_alpha_bp.induct} @{thms alpha1_inj} @{thms rtrm1.inject bp.inject} @{thms rtrm1.distinct bp.distinct} @{thms alpha_rtrm1.cases alpha_bp.cases} @{thms alpha1_eqvt} 1 *})
+
+lemma alpha1_equivp:
+  "equivp alpha_rtrm1"
+  "equivp alpha_bp"
+apply (tactic {*
+  (simp_tac (HOL_ss addsimps @{thms equivp_reflp_symp_transp reflp_def symp_def})
+  THEN' rtac @{thm conjI} THEN' rtac @{thm allI} THEN'
+  resolve_tac (HOLogic.conj_elims @{thm alpha1_reflp_aux})
+  THEN' rtac @{thm conjI} THEN' rtac @{thm allI} THEN' rtac @{thm allI} THEN'
+  resolve_tac (HOLogic.conj_elims @{thm alpha1_symp_aux}) THEN' rtac @{thm transp_aux}
+  THEN' resolve_tac (HOLogic.conj_elims @{thm alpha1_transp_aux})
+)
+1 *})
+done*)
+
+end