|
1 theory Abs |
|
2 imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "../Quotient" "../Quotient_Product" |
|
3 begin |
|
4 |
|
5 (* the next three lemmas that should be in Nominal \<dots>\<dots>must be cleaned *) |
|
6 lemma ball_image: |
|
7 shows "(\<forall>x \<in> p \<bullet> S. P x) = (\<forall>x \<in> S. P (p \<bullet> x))" |
|
8 apply(auto) |
|
9 apply(drule_tac x="p \<bullet> x" in bspec) |
|
10 apply(simp add: mem_permute_iff) |
|
11 apply(simp) |
|
12 apply(drule_tac x="(- p) \<bullet> x" in bspec) |
|
13 apply(rule_tac p1="p" in mem_permute_iff[THEN iffD1]) |
|
14 apply(simp) |
|
15 apply(simp) |
|
16 done |
|
17 |
|
18 lemma fresh_star_plus: |
|
19 fixes p q::perm |
|
20 shows "\<lbrakk>a \<sharp>* p; a \<sharp>* q\<rbrakk> \<Longrightarrow> a \<sharp>* (p + q)" |
|
21 unfolding fresh_star_def |
|
22 by (simp add: fresh_plus_perm) |
|
23 |
|
24 lemma fresh_star_permute_iff: |
|
25 shows "(p \<bullet> a) \<sharp>* (p \<bullet> x) \<longleftrightarrow> a \<sharp>* x" |
|
26 apply(simp add: fresh_star_def) |
|
27 apply(simp add: ball_image) |
|
28 apply(simp add: fresh_permute_iff) |
|
29 done |
|
30 |
|
31 fun |
|
32 alpha_gen |
|
33 where |
|
34 alpha_gen[simp del]: |
|
35 "alpha_gen (bs, x) R f pi (cs, y) \<longleftrightarrow> f x - bs = f y - cs \<and> (f x - bs) \<sharp>* pi \<and> R (pi \<bullet> x) y" |
|
36 |
|
37 notation |
|
38 alpha_gen ("_ \<approx>gen _ _ _ _" [100, 100, 100, 100, 100] 100) |
|
39 |
|
40 lemma [mono]: "R1 \<le> R2 \<Longrightarrow> alpha_gen x R1 \<le> alpha_gen x R2" |
|
41 by (cases x) (auto simp add: le_fun_def le_bool_def alpha_gen.simps) |
|
42 |
|
43 lemma alpha_gen_refl: |
|
44 assumes a: "R x x" |
|
45 shows "(bs, x) \<approx>gen R f 0 (bs, x)" |
|
46 using a by (simp add: alpha_gen fresh_star_def fresh_zero_perm) |
|
47 |
|
48 lemma alpha_gen_sym: |
|
49 assumes a: "(bs, x) \<approx>gen R f p (cs, y)" |
|
50 and b: "R (p \<bullet> x) y \<Longrightarrow> R (- p \<bullet> y) x" |
|
51 shows "(cs, y) \<approx>gen R f (- p) (bs, x)" |
|
52 using a b by (simp add: alpha_gen fresh_star_def fresh_def supp_minus_perm) |
|
53 |
|
54 lemma alpha_gen_trans: |
|
55 assumes a: "(bs, x) \<approx>gen R f p1 (cs, y)" |
|
56 and b: "(cs, y) \<approx>gen R f p2 (ds, z)" |
|
57 and c: "\<lbrakk>R (p1 \<bullet> x) y; R (p2 \<bullet> y) z\<rbrakk> \<Longrightarrow> R ((p2 + p1) \<bullet> x) z" |
|
58 shows "(bs, x) \<approx>gen R f (p2 + p1) (ds, z)" |
|
59 using a b c using supp_plus_perm |
|
60 apply(simp add: alpha_gen fresh_star_def fresh_def) |
|
61 apply(blast) |
|
62 done |
|
63 |
|
64 lemma alpha_gen_eqvt: |
|
65 assumes a: "(bs, x) \<approx>gen R f q (cs, y)" |
|
66 and b: "R (q \<bullet> x) y \<Longrightarrow> R (p \<bullet> (q \<bullet> x)) (p \<bullet> y)" |
|
67 and c: "p \<bullet> (f x) = f (p \<bullet> x)" |
|
68 and d: "p \<bullet> (f y) = f (p \<bullet> y)" |
|
69 shows "(p \<bullet> bs, p \<bullet> x) \<approx>gen R f (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)" |
|
70 using a b |
|
71 apply(simp add: alpha_gen c[symmetric] d[symmetric] Diff_eqvt[symmetric]) |
|
72 apply(simp add: permute_eqvt[symmetric]) |
|
73 apply(simp add: fresh_star_permute_iff) |
|
74 apply(clarsimp) |
|
75 done |
|
76 |
|
77 lemma alpha_gen_compose_sym: |
|
78 assumes b: "\<exists>pi. (aa, t) \<approx>gen (\<lambda>x1 x2. R x1 x2 \<and> R x2 x1) f pi (ab, s)" |
|
79 and a: "\<And>pi t s. (R t s \<Longrightarrow> R (pi \<bullet> t) (pi \<bullet> s))" |
|
80 shows "\<exists>pi. (ab, s) \<approx>gen R f pi (aa, t)" |
|
81 using b apply - |
|
82 apply(erule exE) |
|
83 apply(rule_tac x="- pi" in exI) |
|
84 apply(simp add: alpha_gen.simps) |
|
85 apply(erule conjE)+ |
|
86 apply(rule conjI) |
|
87 apply(simp add: fresh_star_def fresh_minus_perm) |
|
88 apply(subgoal_tac "R (- pi \<bullet> s) ((- pi) \<bullet> (pi \<bullet> t))") |
|
89 apply simp |
|
90 apply(rule a) |
|
91 apply assumption |
|
92 done |
|
93 |
|
94 lemma alpha_gen_compose_trans: |
|
95 assumes b: "\<exists>pi\<Colon>perm. (aa, t) \<approx>gen (\<lambda>x1 x2. R x1 x2 \<and> (\<forall>x. R x2 x \<longrightarrow> R x1 x)) f pi (ab, ta)" |
|
96 and c: "\<exists>pi\<Colon>perm. (ab, ta) \<approx>gen R f pi (ac, sa)" |
|
97 and a: "\<And>pi t s. (R t s \<Longrightarrow> R (pi \<bullet> t) (pi \<bullet> s))" |
|
98 shows "\<exists>pi\<Colon>perm. (aa, t) \<approx>gen R f pi (ac, sa)" |
|
99 using b c apply - |
|
100 apply(simp add: alpha_gen.simps) |
|
101 apply(erule conjE)+ |
|
102 apply(erule exE)+ |
|
103 apply(erule conjE)+ |
|
104 apply(rule_tac x="pia + pi" in exI) |
|
105 apply(simp add: fresh_star_plus) |
|
106 apply(drule_tac x="- pia \<bullet> sa" in spec) |
|
107 apply(drule mp) |
|
108 apply(rotate_tac 4) |
|
109 apply(drule_tac pi="- pia" in a) |
|
110 apply(simp) |
|
111 apply(rotate_tac 6) |
|
112 apply(drule_tac pi="pia" in a) |
|
113 apply(simp) |
|
114 done |
|
115 |
|
116 lemma alpha_gen_atom_eqvt: |
|
117 assumes a: "\<And>x. pi \<bullet> (f x) = f (pi \<bullet> x)" |
|
118 and b: "\<exists>pia. ({atom a}, t) \<approx>gen (\<lambda>x1 x2. R x1 x2 \<and> R (pi \<bullet> x1) (pi \<bullet> x2)) f pia ({atom b}, s)" |
|
119 shows "\<exists>pia. ({atom (pi \<bullet> a)}, pi \<bullet> t) \<approx>gen R f pia ({atom (pi \<bullet> b)}, pi \<bullet> s)" |
|
120 using b |
|
121 apply - |
|
122 apply(erule exE) |
|
123 apply(rule_tac x="pi \<bullet> pia" in exI) |
|
124 apply(simp add: alpha_gen.simps) |
|
125 apply(erule conjE)+ |
|
126 apply(rule conjI) |
|
127 apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1]) |
|
128 apply(simp add: a[symmetric] atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt) |
|
129 apply(rule conjI) |
|
130 apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1]) |
|
131 apply(simp add: a[symmetric] atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt) |
|
132 apply(subst permute_eqvt[symmetric]) |
|
133 apply(simp) |
|
134 done |
|
135 |
|
136 fun |
|
137 alpha_abs |
|
138 where |
|
139 "alpha_abs (bs, x) (cs, y) = (\<exists>p. (bs, x) \<approx>gen (op=) supp p (cs, y))" |
|
140 |
|
141 notation |
|
142 alpha_abs ("_ \<approx>abs _") |
|
143 |
|
144 lemma alpha_abs_swap: |
|
145 assumes a1: "a \<notin> (supp x) - bs" |
|
146 and a2: "b \<notin> (supp x) - bs" |
|
147 shows "(bs, x) \<approx>abs ((a \<rightleftharpoons> b) \<bullet> bs, (a \<rightleftharpoons> b) \<bullet> x)" |
|
148 apply(simp) |
|
149 apply(rule_tac x="(a \<rightleftharpoons> b)" in exI) |
|
150 apply(simp add: alpha_gen) |
|
151 apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric]) |
|
152 apply(simp add: swap_set_not_in[OF a1 a2]) |
|
153 apply(subgoal_tac "supp (a \<rightleftharpoons> b) \<subseteq> {a, b}") |
|
154 using a1 a2 |
|
155 apply(simp add: fresh_star_def fresh_def) |
|
156 apply(blast) |
|
157 apply(simp add: supp_swap) |
|
158 done |
|
159 |
|
160 fun |
|
161 supp_abs_fun |
|
162 where |
|
163 "supp_abs_fun (bs, x) = (supp x) - bs" |
|
164 |
|
165 lemma supp_abs_fun_lemma: |
|
166 assumes a: "x \<approx>abs y" |
|
167 shows "supp_abs_fun x = supp_abs_fun y" |
|
168 using a |
|
169 apply(induct rule: alpha_abs.induct) |
|
170 apply(simp add: alpha_gen) |
|
171 done |
|
172 |
|
173 quotient_type 'a abs = "(atom set \<times> 'a::pt)" / "alpha_abs" |
|
174 apply(rule equivpI) |
|
175 unfolding reflp_def symp_def transp_def |
|
176 apply(simp_all) |
|
177 (* refl *) |
|
178 apply(clarify) |
|
179 apply(rule exI) |
|
180 apply(rule alpha_gen_refl) |
|
181 apply(simp) |
|
182 (* symm *) |
|
183 apply(clarify) |
|
184 apply(rule exI) |
|
185 apply(rule alpha_gen_sym) |
|
186 apply(assumption) |
|
187 apply(clarsimp) |
|
188 (* trans *) |
|
189 apply(clarify) |
|
190 apply(rule exI) |
|
191 apply(rule alpha_gen_trans) |
|
192 apply(assumption) |
|
193 apply(assumption) |
|
194 apply(simp) |
|
195 done |
|
196 |
|
197 quotient_definition |
|
198 "Abs::atom set \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs" |
|
199 is |
|
200 "Pair::atom set \<Rightarrow> ('a::pt) \<Rightarrow> (atom set \<times> 'a)" |
|
201 |
|
202 lemma [quot_respect]: |
|
203 shows "((op =) ===> (op =) ===> alpha_abs) Pair Pair" |
|
204 apply(clarsimp) |
|
205 apply(rule exI) |
|
206 apply(rule alpha_gen_refl) |
|
207 apply(simp) |
|
208 done |
|
209 |
|
210 lemma [quot_respect]: |
|
211 shows "((op =) ===> alpha_abs ===> alpha_abs) permute permute" |
|
212 apply(clarsimp) |
|
213 apply(rule exI) |
|
214 apply(rule alpha_gen_eqvt) |
|
215 apply(assumption) |
|
216 apply(simp_all add: supp_eqvt) |
|
217 done |
|
218 |
|
219 lemma [quot_respect]: |
|
220 shows "(alpha_abs ===> (op =)) supp_abs_fun supp_abs_fun" |
|
221 apply(simp add: supp_abs_fun_lemma) |
|
222 done |
|
223 |
|
224 lemma abs_induct: |
|
225 "\<lbrakk>\<And>as (x::'a::pt). P (Abs as x)\<rbrakk> \<Longrightarrow> P t" |
|
226 apply(lifting prod.induct[where 'a="atom set" and 'b="'a"]) |
|
227 done |
|
228 |
|
229 (* TEST case *) |
|
230 lemmas abs_induct2 = prod.induct[where 'a="atom set" and 'b="'a::pt", quot_lifted] |
|
231 thm abs_induct abs_induct2 |
|
232 |
|
233 instantiation abs :: (pt) pt |
|
234 begin |
|
235 |
|
236 quotient_definition |
|
237 "permute_abs::perm \<Rightarrow> ('a::pt abs) \<Rightarrow> 'a abs" |
|
238 is |
|
239 "permute:: perm \<Rightarrow> (atom set \<times> 'a::pt) \<Rightarrow> (atom set \<times> 'a::pt)" |
|
240 |
|
241 lemma permute_ABS [simp]: |
|
242 fixes x::"'a::pt" (* ??? has to be 'a \<dots> 'b does not work *) |
|
243 shows "(p \<bullet> (Abs as x)) = Abs (p \<bullet> as) (p \<bullet> x)" |
|
244 by (lifting permute_prod.simps(1)[where 'a="atom set" and 'b="'a"]) |
|
245 |
|
246 instance |
|
247 apply(default) |
|
248 apply(induct_tac [!] x rule: abs_induct) |
|
249 apply(simp_all) |
|
250 done |
|
251 |
|
252 end |
|
253 |
|
254 quotient_definition |
|
255 "supp_Abs_fun :: ('a::pt) abs \<Rightarrow> atom \<Rightarrow> bool" |
|
256 is |
|
257 "supp_abs_fun" |
|
258 |
|
259 lemma supp_Abs_fun_simp: |
|
260 shows "supp_Abs_fun (Abs bs x) = (supp x) - bs" |
|
261 by (lifting supp_abs_fun.simps(1)) |
|
262 |
|
263 lemma supp_Abs_fun_eqvt [eqvt]: |
|
264 shows "(p \<bullet> supp_Abs_fun x) = supp_Abs_fun (p \<bullet> x)" |
|
265 apply(induct_tac x rule: abs_induct) |
|
266 apply(simp add: supp_Abs_fun_simp supp_eqvt Diff_eqvt) |
|
267 done |
|
268 |
|
269 lemma supp_Abs_fun_fresh: |
|
270 shows "a \<sharp> Abs bs x \<Longrightarrow> a \<sharp> supp_Abs_fun (Abs bs x)" |
|
271 apply(rule fresh_fun_eqvt_app) |
|
272 apply(simp add: eqvts_raw) |
|
273 apply(simp) |
|
274 done |
|
275 |
|
276 lemma Abs_swap: |
|
277 assumes a1: "a \<notin> (supp x) - bs" |
|
278 and a2: "b \<notin> (supp x) - bs" |
|
279 shows "(Abs bs x) = (Abs ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x))" |
|
280 using a1 a2 by (lifting alpha_abs_swap) |
|
281 |
|
282 lemma Abs_supports: |
|
283 shows "((supp x) - as) supports (Abs as x)" |
|
284 unfolding supports_def |
|
285 apply(clarify) |
|
286 apply(simp (no_asm)) |
|
287 apply(subst Abs_swap[symmetric]) |
|
288 apply(simp_all) |
|
289 done |
|
290 |
|
291 lemma supp_Abs_subset1: |
|
292 fixes x::"'a::fs" |
|
293 shows "(supp x) - as \<subseteq> supp (Abs as x)" |
|
294 apply(simp add: supp_conv_fresh) |
|
295 apply(auto) |
|
296 apply(drule_tac supp_Abs_fun_fresh) |
|
297 apply(simp only: supp_Abs_fun_simp) |
|
298 apply(simp add: fresh_def) |
|
299 apply(simp add: supp_finite_atom_set finite_supp) |
|
300 done |
|
301 |
|
302 lemma supp_Abs_subset2: |
|
303 fixes x::"'a::fs" |
|
304 shows "supp (Abs as x) \<subseteq> (supp x) - as" |
|
305 apply(rule supp_is_subset) |
|
306 apply(rule Abs_supports) |
|
307 apply(simp add: finite_supp) |
|
308 done |
|
309 |
|
310 lemma supp_Abs: |
|
311 fixes x::"'a::fs" |
|
312 shows "supp (Abs as x) = (supp x) - as" |
|
313 apply(rule_tac subset_antisym) |
|
314 apply(rule supp_Abs_subset2) |
|
315 apply(rule supp_Abs_subset1) |
|
316 done |
|
317 |
|
318 instance abs :: (fs) fs |
|
319 apply(default) |
|
320 apply(induct_tac x rule: abs_induct) |
|
321 apply(simp add: supp_Abs) |
|
322 apply(simp add: finite_supp) |
|
323 done |
|
324 |
|
325 lemma Abs_fresh_iff: |
|
326 fixes x::"'a::fs" |
|
327 shows "a \<sharp> Abs bs x \<longleftrightarrow> a \<in> bs \<or> (a \<notin> bs \<and> a \<sharp> x)" |
|
328 apply(simp add: fresh_def) |
|
329 apply(simp add: supp_Abs) |
|
330 apply(auto) |
|
331 done |
|
332 |
|
333 lemma Abs_eq_iff: |
|
334 shows "Abs bs x = Abs cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>gen (op =) supp p (cs, y))" |
|
335 by (lifting alpha_abs.simps(1)) |
|
336 |
|
337 |
|
338 |
|
339 (* |
|
340 below is a construction site for showing that in the |
|
341 single-binder case, the old and new alpha equivalence |
|
342 coincide |
|
343 *) |
|
344 |
|
345 fun |
|
346 alpha1 |
|
347 where |
|
348 "alpha1 (a, x) (b, y) \<longleftrightarrow> (a = b \<and> x = y) \<or> (a \<noteq> b \<and> x = (a \<rightleftharpoons> b) \<bullet> y \<and> a \<sharp> y)" |
|
349 |
|
350 notation |
|
351 alpha1 ("_ \<approx>abs1 _") |
|
352 |
|
353 thm swap_set_not_in |
|
354 |
|
355 lemma qq: |
|
356 fixes S::"atom set" |
|
357 assumes a: "supp p \<inter> S = {}" |
|
358 shows "p \<bullet> S = S" |
|
359 using a |
|
360 apply(simp add: supp_perm permute_set_eq) |
|
361 apply(auto) |
|
362 apply(simp only: disjoint_iff_not_equal) |
|
363 apply(simp) |
|
364 apply (metis permute_atom_def_raw) |
|
365 apply(rule_tac x="(- p) \<bullet> x" in exI) |
|
366 apply(simp) |
|
367 apply(simp only: disjoint_iff_not_equal) |
|
368 apply(simp) |
|
369 apply(metis permute_minus_cancel) |
|
370 done |
|
371 |
|
372 lemma alpha_abs_swap: |
|
373 assumes a1: "(supp x - bs) \<sharp>* p" |
|
374 and a2: "(supp x - bs) \<sharp>* p" |
|
375 shows "(bs, x) \<approx>abs (p \<bullet> bs, p \<bullet> x)" |
|
376 apply(simp) |
|
377 apply(rule_tac x="p" in exI) |
|
378 apply(simp add: alpha_gen) |
|
379 apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric]) |
|
380 apply(rule conjI) |
|
381 apply(rule sym) |
|
382 apply(rule qq) |
|
383 using a1 a2 |
|
384 apply(auto)[1] |
|
385 oops |
|
386 |
|
387 |
|
388 |
|
389 lemma |
|
390 assumes a: "(a, x) \<approx>abs1 (b, y)" "sort_of a = sort_of b" |
|
391 shows "({a}, x) \<approx>abs ({b}, y)" |
|
392 using a |
|
393 apply(simp) |
|
394 apply(erule disjE) |
|
395 apply(simp) |
|
396 apply(rule exI) |
|
397 apply(rule alpha_gen_refl) |
|
398 apply(simp) |
|
399 apply(rule_tac x="(a \<rightleftharpoons> b)" in exI) |
|
400 apply(simp add: alpha_gen) |
|
401 apply(simp add: fresh_def) |
|
402 apply(rule conjI) |
|
403 apply(rule_tac ?p1="(a \<rightleftharpoons> b)" in permute_eq_iff[THEN iffD1]) |
|
404 apply(rule trans) |
|
405 apply(simp add: Diff_eqvt supp_eqvt) |
|
406 apply(subst swap_set_not_in) |
|
407 back |
|
408 apply(simp) |
|
409 apply(simp) |
|
410 apply(simp add: permute_set_eq) |
|
411 apply(rule_tac ?p1="(a \<rightleftharpoons> b)" in fresh_star_permute_iff[THEN iffD1]) |
|
412 apply(simp add: permute_self) |
|
413 apply(simp add: Diff_eqvt supp_eqvt) |
|
414 apply(simp add: permute_set_eq) |
|
415 apply(subgoal_tac "supp (a \<rightleftharpoons> b) \<subseteq> {a, b}") |
|
416 apply(simp add: fresh_star_def fresh_def) |
|
417 apply(blast) |
|
418 apply(simp add: supp_swap) |
|
419 done |
|
420 |
|
421 thm supp_perm |
|
422 |
|
423 lemma perm_induct_test: |
|
424 fixes P :: "perm => bool" |
|
425 assumes zero: "P 0" |
|
426 assumes swap: "\<And>a b. \<lbrakk>sort_of a = sort_of b; a \<noteq> b\<rbrakk> \<Longrightarrow> P (a \<rightleftharpoons> b)" |
|
427 assumes plus: "\<And>p1 p2. \<lbrakk>supp (p1 + p2) = (supp p1 \<union> supp p2); P p1; P p2\<rbrakk> \<Longrightarrow> P (p1 + p2)" |
|
428 shows "P p" |
|
429 sorry |
|
430 |
|
431 lemma tt1: |
|
432 assumes a: "finite (supp p)" |
|
433 shows "(supp x) \<sharp>* p \<Longrightarrow> p \<bullet> x = x" |
|
434 using a |
|
435 unfolding fresh_star_def fresh_def |
|
436 apply(induct F\<equiv>"supp p" arbitrary: p rule: finite.induct) |
|
437 apply(simp add: supp_perm) |
|
438 defer |
|
439 apply(case_tac "a \<in> A") |
|
440 apply(simp add: insert_absorb) |
|
441 apply(subgoal_tac "A = supp p - {a}") |
|
442 prefer 2 |
|
443 apply(blast) |
|
444 apply(case_tac "p \<bullet> a = a") |
|
445 apply(simp add: supp_perm) |
|
446 apply(drule_tac x="p + (((- p) \<bullet> a) \<rightleftharpoons> a)" in meta_spec) |
|
447 apply(simp) |
|
448 apply(drule meta_mp) |
|
449 apply(rule subset_antisym) |
|
450 apply(rule subsetI) |
|
451 apply(simp) |
|
452 apply(simp add: supp_perm) |
|
453 apply(case_tac "xa = p \<bullet> a") |
|
454 apply(simp) |
|
455 apply(case_tac "p \<bullet> a = (- p) \<bullet> a") |
|
456 apply(simp) |
|
457 defer |
|
458 apply(simp) |
|
459 oops |
|
460 |
|
461 lemma tt: |
|
462 "(supp x) \<sharp>* p \<Longrightarrow> p \<bullet> x = x" |
|
463 apply(induct p rule: perm_induct_test) |
|
464 apply(simp) |
|
465 apply(rule swap_fresh_fresh) |
|
466 apply(case_tac "a \<in> supp x") |
|
467 apply(simp add: fresh_star_def) |
|
468 apply(drule_tac x="a" in bspec) |
|
469 apply(simp) |
|
470 apply(simp add: fresh_def) |
|
471 apply(simp add: supp_swap) |
|
472 apply(simp add: fresh_def) |
|
473 apply(case_tac "b \<in> supp x") |
|
474 apply(simp add: fresh_star_def) |
|
475 apply(drule_tac x="b" in bspec) |
|
476 apply(simp) |
|
477 apply(simp add: fresh_def) |
|
478 apply(simp add: supp_swap) |
|
479 apply(simp add: fresh_def) |
|
480 apply(simp) |
|
481 apply(drule meta_mp) |
|
482 apply(simp add: fresh_star_def fresh_def) |
|
483 apply(drule meta_mp) |
|
484 apply(simp add: fresh_star_def fresh_def) |
|
485 apply(simp) |
|
486 done |
|
487 |
|
488 lemma yy: |
|
489 assumes "S1 - {x} = S2 - {x}" "x \<in> S1" "x \<in> S2" |
|
490 shows "S1 = S2" |
|
491 using assms |
|
492 apply (metis insert_Diff_single insert_absorb) |
|
493 done |
|
494 |
|
495 |
|
496 lemma |
|
497 assumes a: "({a}, x) \<approx>abs ({b}, y)" "sort_of a = sort_of b" |
|
498 shows "(a, x) \<approx>abs1 (b, y)" |
|
499 using a |
|
500 apply(case_tac "a = b") |
|
501 apply(simp) |
|
502 oops |
|
503 |
|
504 |
|
505 end |
|
506 |