Nominal/Term5.thy
changeset 1454 7c8cd6eae8e2
parent 1453 49bdb8d475df
child 1455 0fae5608cd1e
equal deleted inserted replaced
1453:49bdb8d475df 1454:7c8cd6eae8e2
    41   done
    41   done
    42 
    42 
    43 lemma fv_rtrm5_rlts_eqvt[eqvt]:
    43 lemma fv_rtrm5_rlts_eqvt[eqvt]:
    44   "pi \<bullet> (fv_rtrm5 x) = fv_rtrm5 (pi \<bullet> x)"
    44   "pi \<bullet> (fv_rtrm5 x) = fv_rtrm5 (pi \<bullet> x)"
    45   "pi \<bullet> (fv_rlts l) = fv_rlts (pi \<bullet> l)"
    45   "pi \<bullet> (fv_rlts l) = fv_rlts (pi \<bullet> l)"
       
    46   "pi \<bullet> (fv_rbv5 l) = fv_rbv5 (pi \<bullet> l)"
    46   apply (induct x and l)
    47   apply (induct x and l)
    47   apply (simp_all add: eqvts atom_eqvt)
    48   apply (simp_all add: eqvts atom_eqvt)
    48   done
    49   done
    49 
    50 
    50 lemma alpha5_eqvt:
    51 lemma alpha5_eqvt:
    55 done
    56 done
    56 
    57 
    57 lemma alpha5_reflp:
    58 lemma alpha5_reflp:
    58 "y \<approx>5 y \<and> (x \<approx>l x \<and> alpha_rbv5 0 x x)"
    59 "y \<approx>5 y \<and> (x \<approx>l x \<and> alpha_rbv5 0 x x)"
    59 apply (rule rtrm5_rlts.induct)
    60 apply (rule rtrm5_rlts.induct)
    60 thm rtrm5_rlts.induct
       
    61  alpha_rtrm5_alpha_rlts_alpha_rbv5.induct
       
    62 apply (simp_all add: alpha5_inj)
    61 apply (simp_all add: alpha5_inj)
    63 apply (rule_tac x="0::perm" in exI)
    62 apply (rule_tac x="0::perm" in exI)
    64 apply (simp add: eqvts alpha_gen fresh_star_def fresh_zero_perm)
    63 apply (simp add: eqvts alpha_gen fresh_star_def fresh_zero_perm)
    65 done
    64 done
    66 
    65 
    67 lemma alpha5_symp:
    66 lemma alpha5_symp:
    68 "(a \<approx>5 b \<longrightarrow> b \<approx>5 a) \<and>
    67 "(a \<approx>5 b \<longrightarrow> b \<approx>5 a) \<and>
    69 (x \<approx>l y \<longrightarrow> y \<approx>l x) \<and>
    68 (x \<approx>l y \<longrightarrow> y \<approx>l x) \<and>
    70 (alpha_rbv5 p x y \<longrightarrow> alpha_rbv5 (-p) y x)"
    69 (alpha_rbv5 p x y \<longrightarrow> alpha_rbv5 (-p) y x)"
    71 apply (rule alpha_rtrm5_alpha_rlts_alpha_rbv5.induct)
    70 apply (rule alpha_rtrm5_alpha_rlts_alpha_rbv5.induct)
    72 thm alpha_rtrm5_alpha_rlts_alpha_rbv5.induct
       
    73 thm alpha_rtrm5_alpha_rlts_alpha_rbv5.intros
       
    74 apply (simp_all add: alpha5_inj)
    71 apply (simp_all add: alpha5_inj)
    75 sorry
    72 sorry
    76 
    73 
    77 lemma alpha5_equivp:
    74 lemma alpha5_equivp:
    78   "equivp alpha_rtrm5"
    75   "equivp alpha_rtrm5"
    93  |> snd o (Quotient_Def.quotient_lift_const ("Lt5", @{term rLt5}))
    90  |> snd o (Quotient_Def.quotient_lift_const ("Lt5", @{term rLt5}))
    94  |> snd o (Quotient_Def.quotient_lift_const ("Lnil", @{term rLnil}))
    91  |> snd o (Quotient_Def.quotient_lift_const ("Lnil", @{term rLnil}))
    95  |> snd o (Quotient_Def.quotient_lift_const ("Lcons", @{term rLcons}))
    92  |> snd o (Quotient_Def.quotient_lift_const ("Lcons", @{term rLcons}))
    96  |> snd o (Quotient_Def.quotient_lift_const ("fv_trm5", @{term fv_rtrm5}))
    93  |> snd o (Quotient_Def.quotient_lift_const ("fv_trm5", @{term fv_rtrm5}))
    97  |> snd o (Quotient_Def.quotient_lift_const ("fv_lts", @{term fv_rlts}))
    94  |> snd o (Quotient_Def.quotient_lift_const ("fv_lts", @{term fv_rlts}))
       
    95  |> snd o (Quotient_Def.quotient_lift_const ("fv_bv5", @{term fv_rbv5}))
    98  |> snd o (Quotient_Def.quotient_lift_const ("bv5", @{term rbv5}))
    96  |> snd o (Quotient_Def.quotient_lift_const ("bv5", @{term rbv5}))
    99  |> snd o (Quotient_Def.quotient_lift_const ("alpha_bv5", @{term alpha_rbv5})))
    97  |> snd o (Quotient_Def.quotient_lift_const ("alpha_bv5", @{term alpha_rbv5})))
   100 *}
    98 *}
   101 print_theorems
    99 print_theorems
   102 
   100 
   103 lemma alpha5_rfv:
   101 lemma alpha5_rfv:
   104   "(t \<approx>5 s \<Longrightarrow> fv_rtrm5 t = fv_rtrm5 s)"
   102   "(t \<approx>5 s \<Longrightarrow> fv_rtrm5 t = fv_rtrm5 s)"
   105   "(l \<approx>l m \<Longrightarrow> (fv_rlts l = fv_rlts m))"
   103   "(l \<approx>l m \<Longrightarrow> (fv_rlts l = fv_rlts m \<and> fv_rbv5 l = fv_rbv5 m))"
   106   "(alpha_rbv5 a b c \<Longrightarrow> True)"
   104   "(alpha_rbv5 0 b c \<Longrightarrow> fv_rbv5 b = fv_rbv5 c)"
   107   apply(induct rule: alpha_rtrm5_alpha_rlts_alpha_rbv5.inducts)
   105   apply(induct rule: alpha_rtrm5_alpha_rlts_alpha_rbv5.inducts)
   108   apply(simp_all)
   106   apply(simp_all add: eqvts)
   109   apply(simp add: alpha_gen)
   107   apply(simp add: alpha_gen)
   110   apply(clarify)
   108   apply(clarify)
   111   apply(simp_all)
   109   apply(simp)
   112   sorry (* works for non-rec *)
   110   sorry
   113 
   111 
   114 lemma bv_list_rsp:
   112 lemma bv_list_rsp:
   115   shows "x \<approx>l y \<Longrightarrow> rbv5 x = rbv5 y"
   113   shows "x \<approx>l y \<Longrightarrow> rbv5 x = rbv5 y"
   116   apply(induct rule: alpha_rtrm5_alpha_rlts_alpha_rbv5.inducts(2))
   114   apply(induct rule: alpha_rtrm5_alpha_rlts_alpha_rbv5.inducts(2))
   117   apply(simp_all)
   115   apply(simp_all)
   119   apply simp
   117   apply simp
   120   done
   118   done
   121 
   119 
   122 lemma [quot_respect]:
   120 lemma [quot_respect]:
   123   "(alpha_rlts ===> op =) fv_rlts fv_rlts"
   121   "(alpha_rlts ===> op =) fv_rlts fv_rlts"
       
   122   "(alpha_rlts ===> op =) fv_rbv5 fv_rbv5"
   124   "(alpha_rtrm5 ===> op =) fv_rtrm5 fv_rtrm5"
   123   "(alpha_rtrm5 ===> op =) fv_rtrm5 fv_rtrm5"
   125   "(alpha_rlts ===> op =) rbv5 rbv5"
   124   "(alpha_rlts ===> op =) rbv5 rbv5"
   126   "(op = ===> alpha_rtrm5) rVr5 rVr5"
   125   "(op = ===> alpha_rtrm5) rVr5 rVr5"
   127   "(alpha_rtrm5 ===> alpha_rtrm5 ===> alpha_rtrm5) rAp5 rAp5"
   126   "(alpha_rtrm5 ===> alpha_rtrm5 ===> alpha_rtrm5) rAp5 rAp5"
   128   "(alpha_rlts ===> alpha_rtrm5 ===> alpha_rtrm5) rLt5 rLt5"
   127   "(alpha_rlts ===> alpha_rtrm5 ===> alpha_rtrm5) rLt5 rLt5"
   171 
   170 
   172 end
   171 end
   173 
   172 
   174 lemmas permute_trm5_lts = permute_rtrm5_permute_rlts.simps[quot_lifted]
   173 lemmas permute_trm5_lts = permute_rtrm5_permute_rlts.simps[quot_lifted]
   175 lemmas bv5[simp] = rbv5.simps[quot_lifted]
   174 lemmas bv5[simp] = rbv5.simps[quot_lifted]
   176 lemmas fv_trm5_lts[simp] = fv_rtrm5_fv_rlts.simps[quot_lifted]
   175 lemmas fv_trm5_bv5[simp] = fv_rtrm5_fv_rbv5.simps[quot_lifted]
       
   176 lemmas fv_lts[simp] = fv_rlts.simps[quot_lifted]
   177 lemmas alpha5_INJ = alpha5_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen]
   177 lemmas alpha5_INJ = alpha5_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen]
   178 
   178 
   179 lemma lets_ok:
   179 lemma lets_ok:
   180   "(Lt5 (Lcons x (Vr5 x) Lnil) (Vr5 x)) = (Lt5 (Lcons y (Vr5 y) Lnil) (Vr5 y))"
   180   "(Lt5 (Lcons x (Vr5 x) Lnil) (Vr5 x)) = (Lt5 (Lcons y (Vr5 y) Lnil) (Vr5 y))"
   181 apply (simp add: alpha5_INJ)
   181 thm alpha5_INJ
       
   182 apply (simp only: alpha5_INJ)
   182 apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
   183 apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
   183 apply (simp_all add: alpha_gen)
   184 apply (simp_all add: alpha_gen)
   184 apply (simp add: permute_trm5_lts fresh_star_def)
   185 apply (simp add: permute_trm5_lts fresh_star_def)
   185 apply (metis flip_at_simps(1) supp_at_base supp_eqvt)
   186 apply (metis flip_at_simps(1) supp_at_base supp_eqvt)
   186 done
   187 done