Nominal/Term5.thy
changeset 1453 49bdb8d475df
parent 1421 95324fb345e5
child 1454 7c8cd6eae8e2
equal deleted inserted replaced
1452:31f000d586bb 1453:49bdb8d475df
    55 done
    55 done
    56 
    56 
    57 lemma alpha5_reflp:
    57 lemma alpha5_reflp:
    58 "y \<approx>5 y \<and> (x \<approx>l x \<and> alpha_rbv5 0 x x)"
    58 "y \<approx>5 y \<and> (x \<approx>l x \<and> alpha_rbv5 0 x x)"
    59 apply (rule rtrm5_rlts.induct)
    59 apply (rule rtrm5_rlts.induct)
       
    60 thm rtrm5_rlts.induct
       
    61  alpha_rtrm5_alpha_rlts_alpha_rbv5.induct
    60 apply (simp_all add: alpha5_inj)
    62 apply (simp_all add: alpha5_inj)
    61 apply (rule_tac x="0::perm" in exI)
    63 apply (rule_tac x="0::perm" in exI)
    62 apply (simp add: eqvts alpha_gen fresh_star_def fresh_zero_perm)
    64 apply (simp add: eqvts alpha_gen fresh_star_def fresh_zero_perm)
    63 done
    65 done
    64 
    66 
    65 lemma alpha5_symp:
    67 lemma alpha5_symp:
    66 "(a \<approx>5 b \<longrightarrow> a \<approx>5 b) \<and>
    68 "(a \<approx>5 b \<longrightarrow> b \<approx>5 a) \<and>
    67 (x \<approx>l y \<longrightarrow> y \<approx>l x) \<and>
    69 (x \<approx>l y \<longrightarrow> y \<approx>l x) \<and>
    68 (alpha_rbv5 p x y \<longrightarrow> alpha_rbv5 (-p) y x)"
    70 (alpha_rbv5 p x y \<longrightarrow> alpha_rbv5 (-p) y x)"
    69 apply (rule alpha_rtrm5_alpha_rlts_alpha_rbv5.induct)
    71 apply (rule alpha_rtrm5_alpha_rlts_alpha_rbv5.induct)
       
    72 thm alpha_rtrm5_alpha_rlts_alpha_rbv5.induct
       
    73 thm alpha_rtrm5_alpha_rlts_alpha_rbv5.intros
    70 apply (simp_all add: alpha5_inj)
    74 apply (simp_all add: alpha5_inj)
    71 sorry
    75 sorry
    72 
    76 
    73 lemma alpha5_equivp:
    77 lemma alpha5_equivp:
    74   "equivp alpha_rtrm5"
    78   "equivp alpha_rtrm5"