Nominal/Ex/SFT/LambdaTerms.thy
changeset 3088 5e74bd87bcda
parent 3087 c95afd0dc594
child 3235 5ebd327ffb96
equal deleted inserted replaced
3087:c95afd0dc594 3088:5e74bd87bcda
     3 theory LambdaTerms imports "../../Nominal2" begin
     3 theory LambdaTerms imports "../../Nominal2" begin
     4 
     4 
     5 lemma [simp]: "supp x = {} \<Longrightarrow> y \<sharp> x"
     5 lemma [simp]: "supp x = {} \<Longrightarrow> y \<sharp> x"
     6   unfolding fresh_def by blast
     6   unfolding fresh_def by blast
     7 
     7 
     8 atom_decl var
     8 atom_decl name
     9 
     9 
    10 nominal_datatype lam =
    10 nominal_datatype lam =
    11   Var "var"
    11   Var "name"
    12 | App "lam" "lam"
    12 | App "lam" "lam"
    13 | Lam x::"var" l::"lam"  binds x in l ("Lam [_]. _" [100, 100] 100)
    13 | Lam x::"name" l::"lam"  binds x in l ("Lam [_]. _" [100, 100] 100)
    14 
    14 
    15 notation
    15 notation
    16   App (infixl "\<cdot>" 98) and
    16   App (infixl "\<cdot>" 98) and
    17   Lam ("\<integral> _. _" [97, 97] 99)
    17   Lam ("\<integral> _. _" [97, 97] 99)
    18 
    18 
    19 nominal_primrec
    19 nominal_primrec
    20   subst :: "lam \<Rightarrow> var \<Rightarrow> lam \<Rightarrow> lam"  ("_ [_ ::= _]" [90, 90, 90] 90)
    20   subst :: "lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam"  ("_ [_ ::= _]" [90, 90, 90] 90)
    21 where
    21 where
    22   "(Var x)[y ::= s] = (if x = y then s else (Var x))"
    22   "(Var x)[y ::= s] = (if x = y then s else (Var x))"
    23 | "(t1 \<cdot> t2)[y ::= s] = (t1[y ::= s]) \<cdot> (t2[y ::= s])"
    23 | "(t1 \<cdot> t2)[y ::= s] = (t1[y ::= s]) \<cdot> (t2[y ::= s])"
    24 | "atom x \<sharp> (y, s) \<Longrightarrow> (\<integral>x. t)[y ::= s] = \<integral>x.(t[y ::= s])"
    24 | "atom x \<sharp> (y, s) \<Longrightarrow> (\<integral>x. t)[y ::= s] = \<integral>x.(t[y ::= s])"
    25 proof auto
    25 proof auto
    26   fix a b :: lam and aa :: var and P
    26   fix a b :: lam and aa :: name and P
    27   assume "\<And>x y s. a = Var x \<and> aa = y \<and> b = s \<Longrightarrow> P"
    27   assume "\<And>x y s. a = Var x \<and> aa = y \<and> b = s \<Longrightarrow> P"
    28     "\<And>t1 t2 y s. a = t1 \<cdot> t2 \<and> aa = y \<and> b = s \<Longrightarrow> P"
    28     "\<And>t1 t2 y s. a = t1 \<cdot> t2 \<and> aa = y \<and> b = s \<Longrightarrow> P"
    29     "\<And>x y s t. \<lbrakk>atom x \<sharp> (y, s); a = \<integral> x. t \<and> aa = y \<and> b = s\<rbrakk> \<Longrightarrow> P"
    29     "\<And>x y s t. \<lbrakk>atom x \<sharp> (y, s); a = \<integral> x. t \<and> aa = y \<and> b = s\<rbrakk> \<Longrightarrow> P"
    30   then show "P"
    30   then show "P"
    31     by (rule_tac y="a" and c="(aa, b)" in lam.strong_exhaust)
    31     by (rule_tac y="a" and c="(aa, b)" in lam.strong_exhaust)
    32        (blast, blast, simp add: fresh_star_def)
    32        (blast, blast, simp add: fresh_star_def)
    33 next
    33 next
    34   fix x :: var and t and xa :: var and ya sa ta
    34   fix x :: name and t and xa :: name and ya sa ta
    35   assume *: "eqvt_at subst_sumC (t, ya, sa)"
    35   assume *: "eqvt_at subst_sumC (t, ya, sa)"
    36     "atom x \<sharp> (ya, sa)" "atom xa \<sharp> (ya, sa)"
    36     "atom x \<sharp> (ya, sa)" "atom xa \<sharp> (ya, sa)"
    37     "[[atom x]]lst. t = [[atom xa]]lst. ta"
    37     "[[atom x]]lst. t = [[atom xa]]lst. ta"
    38   then show "[[atom x]]lst. subst_sumC (t, ya, sa) = [[atom xa]]lst. subst_sumC (ta, ya, sa)"
    38   then show "[[atom x]]lst. subst_sumC (t, ya, sa) = [[atom xa]]lst. subst_sumC (ta, ya, sa)"
    39     apply -
    39     apply -