Nominal/Ex/SFT/LambdaTerms.thy
changeset 3087 c95afd0dc594
parent 2984 1b39ba5db2c1
child 3088 5e74bd87bcda
equal deleted inserted replaced
3086:3750c08f627e 3087:c95afd0dc594
       
     1 header {* Definition of Lambda terms and convertibility *}
       
     2 
       
     3 theory LambdaTerms imports "../../Nominal2" begin
       
     4 
       
     5 lemma [simp]: "supp x = {} \<Longrightarrow> y \<sharp> x"
       
     6   unfolding fresh_def by blast
       
     7 
       
     8 atom_decl var
       
     9 
       
    10 nominal_datatype lam =
       
    11   Var "var"
       
    12 | App "lam" "lam"
       
    13 | Lam x::"var" l::"lam"  binds x in l ("Lam [_]. _" [100, 100] 100)
       
    14 
       
    15 notation
       
    16   App (infixl "\<cdot>" 98) and
       
    17   Lam ("\<integral> _. _" [97, 97] 99)
       
    18 
       
    19 nominal_primrec
       
    20   subst :: "lam \<Rightarrow> var \<Rightarrow> lam \<Rightarrow> lam"  ("_ [_ ::= _]" [90, 90, 90] 90)
       
    21 where
       
    22   "(Var x)[y ::= s] = (if x = y then s else (Var x))"
       
    23 | "(t1 \<cdot> t2)[y ::= s] = (t1[y ::= s]) \<cdot> (t2[y ::= s])"
       
    24 | "atom x \<sharp> (y, s) \<Longrightarrow> (\<integral>x. t)[y ::= s] = \<integral>x.(t[y ::= s])"
       
    25 proof auto
       
    26   fix a b :: lam and aa :: var and P
       
    27   assume "\<And>x y s. a = Var x \<and> aa = y \<and> b = s \<Longrightarrow> P"
       
    28     "\<And>t1 t2 y s. a = t1 \<cdot> t2 \<and> aa = y \<and> b = s \<Longrightarrow> P"
       
    29     "\<And>x y s t. \<lbrakk>atom x \<sharp> (y, s); a = \<integral> x. t \<and> aa = y \<and> b = s\<rbrakk> \<Longrightarrow> P"
       
    30   then show "P"
       
    31     by (rule_tac y="a" and c="(aa, b)" in lam.strong_exhaust)
       
    32        (blast, blast, simp add: fresh_star_def)
       
    33 next
       
    34   fix x :: var and t and xa :: var and ya sa ta
       
    35   assume *: "eqvt_at subst_sumC (t, ya, sa)"
       
    36     "atom x \<sharp> (ya, sa)" "atom xa \<sharp> (ya, sa)"
       
    37     "[[atom x]]lst. t = [[atom xa]]lst. ta"
       
    38   then show "[[atom x]]lst. subst_sumC (t, ya, sa) = [[atom xa]]lst. subst_sumC (ta, ya, sa)"
       
    39     apply -
       
    40     apply (erule Abs_lst1_fcb)
       
    41     apply(simp (no_asm) add: Abs_fresh_iff)
       
    42     apply(drule_tac a="atom xa" in fresh_eqvt_at)
       
    43     apply(simp add: finite_supp)
       
    44     apply(simp_all add: fresh_Pair_elim Abs_fresh_iff Abs1_eq_iff)
       
    45     apply(subgoal_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> ya = ya")
       
    46     apply(subgoal_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> sa = sa")
       
    47     apply(simp add: atom_eqvt eqvt_at_def)
       
    48     apply(rule perm_supp_eq, simp add: supp_swap fresh_star_def fresh_Pair)+
       
    49     done
       
    50 next
       
    51   show "eqvt subst_graph" unfolding eqvt_def subst_graph_def
       
    52     by (rule, perm_simp, rule)
       
    53 qed
       
    54 
       
    55 termination (eqvt) by lexicographic_order
       
    56 
       
    57 lemma forget[simp]:
       
    58   shows "atom x \<sharp> t \<Longrightarrow> t[x ::= s] = t"
       
    59   by (nominal_induct t avoiding: x s rule: lam.strong_induct)
       
    60      (auto simp add: lam.fresh fresh_at_base)
       
    61 
       
    62 lemma forget_closed[simp]: "supp t = {} \<Longrightarrow> t[x ::= s] = t"
       
    63   by (simp add: fresh_def)
       
    64 
       
    65 lemma subst_id[simp]: "M [x ::= Var x] = M"
       
    66   by (rule_tac lam="M" and c="x" in lam.strong_induct)
       
    67      (simp_all add: fresh_star_def lam.fresh fresh_Pair)
       
    68 
       
    69 inductive
       
    70   beta :: "lam \<Rightarrow> lam \<Rightarrow> bool" (infix "\<approx>" 80)
       
    71 where
       
    72   bI: "(\<integral>x. M) \<cdot> N \<approx> M[x ::= N]"
       
    73 | b1: "M \<approx> M"
       
    74 | b2: "M \<approx> N \<Longrightarrow> N \<approx> M"
       
    75 | b3: "M \<approx> N \<Longrightarrow> N \<approx> L \<Longrightarrow> M \<approx> L"
       
    76 | b4: "M \<approx> N \<Longrightarrow> Z \<cdot> M \<approx> Z \<cdot> N"
       
    77 | b5: "M \<approx> N \<Longrightarrow> M \<cdot> Z \<approx> N \<cdot> Z"
       
    78 | b6: "M \<approx> N \<Longrightarrow> \<integral>x. M \<approx> \<integral>x. N"
       
    79 
       
    80 lemmas [trans] = b3
       
    81 equivariance beta
       
    82 
       
    83 end