Nominal/Ex/ExLetRec.thy
changeset 2436 3885dc2669f9
parent 2435 3772bb3bd7ce
child 2437 319f469b8b67
child 2438 abafea9b39bb
equal deleted inserted replaced
2435:3772bb3bd7ce 2436:3885dc2669f9
     1 theory ExLetRec
       
     2 imports "../NewParser"
       
     3 begin
       
     4 
       
     5 
       
     6 text {* example 3 or example 5 from Terms.thy *}
       
     7 
       
     8 atom_decl name
       
     9 
       
    10 ML {* val _ = cheat_equivp := true *}
       
    11 
       
    12 nominal_datatype trm =
       
    13   Vr "name"
       
    14 | Ap "trm" "trm"
       
    15 | Lm x::"name" t::"trm"  bind_set x in t
       
    16 | Lt a::"lts" t::"trm"   bind "bn a" in a t
       
    17 and lts =
       
    18   Lnil
       
    19 | Lcons "name" "trm" "lts"
       
    20 binder
       
    21   bn
       
    22 where
       
    23   "bn Lnil = []"
       
    24 | "bn (Lcons x t l) = (atom x) # (bn l)"
       
    25 
       
    26 thm trm_lts.fv
       
    27 thm trm_lts.eq_iff
       
    28 thm trm_lts.bn
       
    29 thm trm_lts.perm
       
    30 thm trm_lts.induct
       
    31 thm trm_lts.distinct
       
    32 thm trm_lts.supp
       
    33 thm trm_lts.fv[simplified trm_lts.supp]
       
    34 
       
    35 
       
    36 (* why is this not in HOL simpset? *)
       
    37 lemma set_sub: "{a, b} - {b} = {a} - {b}"
       
    38 by auto
       
    39 
       
    40 lemma lets_bla:
       
    41   "x \<noteq> z \<Longrightarrow> y \<noteq> z \<Longrightarrow> x \<noteq> y \<Longrightarrow>(Lt (Lcons x (Vr y) Lnil) (Vr x)) \<noteq> (Lt (Lcons x (Vr z) Lnil) (Vr x))"
       
    42   apply (auto simp add: trm_lts.eq_iff alphas set_sub supp_at_base)
       
    43   done
       
    44 
       
    45 lemma lets_ok:
       
    46   "(Lt (Lcons x (Vr x) Lnil) (Vr x)) = (Lt (Lcons y (Vr y) Lnil) (Vr y))"
       
    47   apply (simp add: trm_lts.eq_iff)
       
    48   apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
       
    49   apply (simp_all add: alphas fresh_star_def eqvts supp_at_base)
       
    50   done
       
    51 
       
    52 lemma lets_ok3:
       
    53   "x \<noteq> y \<Longrightarrow>
       
    54    (Lt (Lcons x (Ap (Vr y) (Vr x)) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
       
    55    (Lt (Lcons y (Ap (Vr x) (Vr y)) (Lcons x (Vr x) Lnil)) (Ap (Vr x) (Vr y)))"
       
    56   apply (simp add: alphas trm_lts.eq_iff)
       
    57   done
       
    58 
       
    59 
       
    60 lemma lets_not_ok1:
       
    61   "x \<noteq> y \<Longrightarrow>
       
    62    (Lt (Lcons x (Vr x) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
       
    63    (Lt (Lcons y (Vr x) (Lcons x (Vr y) Lnil)) (Ap (Vr x) (Vr y)))"
       
    64   apply (simp add: alphas trm_lts.eq_iff)
       
    65   done
       
    66 
       
    67 lemma lets_nok:
       
    68   "x \<noteq> y \<Longrightarrow> x \<noteq> z \<Longrightarrow> z \<noteq> y \<Longrightarrow>
       
    69    (Lt (Lcons x (Ap (Vr z) (Vr z)) (Lcons y (Vr z) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
       
    70    (Lt (Lcons y (Vr z) (Lcons x (Ap (Vr z) (Vr z)) Lnil)) (Ap (Vr x) (Vr y)))"
       
    71   apply (simp add: alphas trm_lts.eq_iff fresh_star_def)
       
    72   done
       
    73 
       
    74 lemma lets_ok4:
       
    75   "(Lt (Lcons x (Ap (Vr y) (Vr x)) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) =
       
    76    (Lt (Lcons y (Ap (Vr x) (Vr y)) (Lcons x (Vr x) Lnil)) (Ap (Vr y) (Vr x)))"
       
    77   apply (simp add: alphas trm_lts.eq_iff supp_at_base)
       
    78   apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
       
    79   apply (simp add: atom_eqvt fresh_star_def)
       
    80   done
       
    81 
       
    82 end
       
    83 
       
    84 
       
    85