diff -r 3772bb3bd7ce -r 3885dc2669f9 Nominal/Ex/ExLetRec.thy --- a/Nominal/Ex/ExLetRec.thy Wed Aug 25 23:16:42 2010 +0800 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,85 +0,0 @@ -theory ExLetRec -imports "../NewParser" -begin - - -text {* example 3 or example 5 from Terms.thy *} - -atom_decl name - -ML {* val _ = cheat_equivp := true *} - -nominal_datatype trm = - Vr "name" -| Ap "trm" "trm" -| Lm x::"name" t::"trm" bind_set x in t -| Lt a::"lts" t::"trm" bind "bn a" in a t -and lts = - Lnil -| Lcons "name" "trm" "lts" -binder - bn -where - "bn Lnil = []" -| "bn (Lcons x t l) = (atom x) # (bn l)" - -thm trm_lts.fv -thm trm_lts.eq_iff -thm trm_lts.bn -thm trm_lts.perm -thm trm_lts.induct -thm trm_lts.distinct -thm trm_lts.supp -thm trm_lts.fv[simplified trm_lts.supp] - - -(* why is this not in HOL simpset? *) -lemma set_sub: "{a, b} - {b} = {a} - {b}" -by auto - -lemma lets_bla: - "x \ z \ y \ z \ x \ y \(Lt (Lcons x (Vr y) Lnil) (Vr x)) \ (Lt (Lcons x (Vr z) Lnil) (Vr x))" - apply (auto simp add: trm_lts.eq_iff alphas set_sub supp_at_base) - done - -lemma lets_ok: - "(Lt (Lcons x (Vr x) Lnil) (Vr x)) = (Lt (Lcons y (Vr y) Lnil) (Vr y))" - apply (simp add: trm_lts.eq_iff) - apply (rule_tac x="(x \ y)" in exI) - apply (simp_all add: alphas fresh_star_def eqvts supp_at_base) - done - -lemma lets_ok3: - "x \ y \ - (Lt (Lcons x (Ap (Vr y) (Vr x)) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) \ - (Lt (Lcons y (Ap (Vr x) (Vr y)) (Lcons x (Vr x) Lnil)) (Ap (Vr x) (Vr y)))" - apply (simp add: alphas trm_lts.eq_iff) - done - - -lemma lets_not_ok1: - "x \ y \ - (Lt (Lcons x (Vr x) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) \ - (Lt (Lcons y (Vr x) (Lcons x (Vr y) Lnil)) (Ap (Vr x) (Vr y)))" - apply (simp add: alphas trm_lts.eq_iff) - done - -lemma lets_nok: - "x \ y \ x \ z \ z \ y \ - (Lt (Lcons x (Ap (Vr z) (Vr z)) (Lcons y (Vr z) Lnil)) (Ap (Vr x) (Vr y))) \ - (Lt (Lcons y (Vr z) (Lcons x (Ap (Vr z) (Vr z)) Lnil)) (Ap (Vr x) (Vr y)))" - apply (simp add: alphas trm_lts.eq_iff fresh_star_def) - done - -lemma lets_ok4: - "(Lt (Lcons x (Ap (Vr y) (Vr x)) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) = - (Lt (Lcons y (Ap (Vr x) (Vr y)) (Lcons x (Vr x) Lnil)) (Ap (Vr y) (Vr x)))" - apply (simp add: alphas trm_lts.eq_iff supp_at_base) - apply (rule_tac x="(x \ y)" in exI) - apply (simp add: atom_eqvt fresh_star_def) - done - -end - - -