Nominal/ExLet.thy
changeset 1638 36798cdbc452
parent 1602 a7e60da429e2
child 1639 a98d03fb9d53
equal deleted inserted replaced
1637:a5501c9fad9b 1638:36798cdbc452
    23 
    23 
    24 thm trm_lts.fv
    24 thm trm_lts.fv
    25 thm trm_lts.eq_iff
    25 thm trm_lts.eq_iff
    26 thm trm_lts.bn
    26 thm trm_lts.bn
    27 thm trm_lts.perm
    27 thm trm_lts.perm
    28 thm trm_lts.induct
    28 thm trm_lts.induct[no_vars]
       
    29 thm trm_lts.inducts[no_vars]
    29 thm trm_lts.distinct
    30 thm trm_lts.distinct
    30 thm trm_lts.fv[simplified trm_lts.supp]
    31 thm trm_lts.fv[simplified trm_lts.supp]
       
    32 
       
    33 lemma 
       
    34   fixes t::trm
       
    35   and   l::lts
       
    36   and   c::"'a::fs"
       
    37   assumes a1: "\<And>name c. P1 c (Vr name)" 
       
    38   and     a2: "\<And>trm1 trm2 c. \<lbrakk>\<And>d. P1 d trm1; \<And>d. P1 d trm2\<rbrakk> \<Longrightarrow> P1 c (Ap trm1 trm2)"
       
    39   and     a3: "\<And>name trm c. \<lbrakk>atom name \<sharp> c; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lm name trm)" 
       
    40   and     a4: "\<And>lts trm c. \<lbrakk>bn lts \<sharp>* c; \<And>d. P2 d lts; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lt lts trm)"
       
    41   and     a5: "\<And>c. P2 c Lnil"
       
    42   and     a6: "\<And>name trm lts c. \<lbrakk>\<And>d. P1 d trm; \<And>d. P2 d lts\<rbrakk> \<Longrightarrow> P2 c (Lcons name trm lts)"
       
    43   shows "P1 c t" and "P2 c l"
       
    44 proof -
       
    45   have "(\<And>(p::perm) (c::'a::fs). P1 c (p \<bullet> t))" and
       
    46        "(\<And>(p::perm) (c::'a::fs). P2 c (p \<bullet> l))"
       
    47     apply(induct rule: trm_lts.inducts)
       
    48     apply(simp)
       
    49     apply(rule a1)
       
    50     apply(simp)
       
    51     apply(rule a2)
       
    52     apply(simp)
       
    53     apply(simp)
       
    54     apply(simp)
       
    55     apply(subgoal_tac "\<exists>q. (q \<bullet> (atom (p \<bullet> name))) \<sharp> c \<and> supp (Lm (p \<bullet> name) (p \<bullet> trm)) \<sharp>* q")
       
    56     apply(erule exE)
       
    57     apply(rule_tac t="Lm (p \<bullet> name) (p \<bullet> trm)" 
       
    58                and s="q\<bullet> Lm (p \<bullet> name) (p \<bullet> trm)" in subst)
       
    59     apply(rule supp_perm_eq)
       
    60     apply(simp)
       
    61     apply(simp)
       
    62     apply(rule a3)
       
    63     apply(simp add: atom_eqvt)
       
    64     apply(subst permute_plus[symmetric])
       
    65     apply(blast)
       
    66     apply(rule at_set_avoiding2_atom)
       
    67     apply(simp add: finite_supp)
       
    68     apply(simp add: finite_supp)
       
    69     apply(simp add: fresh_def)
       
    70     apply(simp add: trm_lts.fv[simplified trm_lts.supp])
       
    71     apply(simp)
       
    72     apply(subgoal_tac "\<exists>q. (q \<bullet> bn (p \<bullet> lts)) \<sharp>* c \<and> supp (Lt (p \<bullet> lts) (p \<bullet> trm)) \<sharp>* q")
       
    73     apply(erule exE)
       
    74     apply(rule_tac t="Lt (p \<bullet> lts) (p \<bullet> trm)" 
       
    75                and s="q \<bullet> Lt (p \<bullet> lts) (p \<bullet> trm)" in subst)
       
    76     apply(rule supp_perm_eq)
       
    77     apply(simp)
       
    78     apply(simp)
       
    79     apply(rule a4)
       
    80     apply(simp add: eqvts)
       
    81     apply(subst permute_plus[symmetric])
       
    82     apply(blast)
       
    83     apply(subst permute_plus[symmetric])
       
    84     apply(blast)
       
    85     apply(rule at_set_avoiding2)
       
    86     apply(simp add: finite_supp)
       
    87     defer
       
    88     apply(simp add: finite_supp)
       
    89     apply(simp add: finite_supp)
       
    90     apply(simp add: fresh_star_def)
       
    91     apply(simp add: fresh_def)
       
    92     apply(simp add: trm_lts.fv[simplified trm_lts.supp])
       
    93     defer
       
    94     apply(simp)
       
    95     apply(rule a5)
       
    96     apply(simp)
       
    97     apply(rule a6)
       
    98     apply(simp)
       
    99     apply(simp)
       
   100     oops
       
   101     
       
   102 
    31 
   103 
    32 lemma lets_bla:
   104 lemma lets_bla:
    33   "x \<noteq> z \<Longrightarrow> y \<noteq> z \<Longrightarrow> x \<noteq> y \<Longrightarrow>(Lt (Lcons x (Vr y) Lnil) (Vr x)) \<noteq> (Lt (Lcons x (Vr z) Lnil) (Vr x))"
   105   "x \<noteq> z \<Longrightarrow> y \<noteq> z \<Longrightarrow> x \<noteq> y \<Longrightarrow>(Lt (Lcons x (Vr y) Lnil) (Vr x)) \<noteq> (Lt (Lcons x (Vr z) Lnil) (Vr x))"
    34   by (simp add: trm_lts.eq_iff)
   106   by (simp add: trm_lts.eq_iff)
    35 
   107