Nominal/ExLet.thy
changeset 1639 a98d03fb9d53
parent 1638 36798cdbc452
child 1640 cd5a6db05540
equal deleted inserted replaced
1638:36798cdbc452 1639:a98d03fb9d53
    28 thm trm_lts.induct[no_vars]
    28 thm trm_lts.induct[no_vars]
    29 thm trm_lts.inducts[no_vars]
    29 thm trm_lts.inducts[no_vars]
    30 thm trm_lts.distinct
    30 thm trm_lts.distinct
    31 thm trm_lts.fv[simplified trm_lts.supp]
    31 thm trm_lts.fv[simplified trm_lts.supp]
    32 
    32 
       
    33 consts
       
    34   permute_bn :: "perm \<Rightarrow> lts \<Rightarrow> lts"
       
    35 
       
    36 lemma test:
       
    37   "permute_bn pi (Lnil) = Lnil"
       
    38   "permute_bn pi (Lcons a t l) = Lcons (pi \<bullet> a) t (permute_bn pi l)"
       
    39   sorry
       
    40 
    33 lemma 
    41 lemma 
    34   fixes t::trm
    42   fixes t::trm
    35   and   l::lts
    43   and   l::lts
    36   and   c::"'a::fs"
    44   and   c::"'a::fs"
    37   assumes a1: "\<And>name c. P1 c (Vr name)" 
    45   assumes a1: "\<And>name c. P1 c (Vr name)" 
    38   and     a2: "\<And>trm1 trm2 c. \<lbrakk>\<And>d. P1 d trm1; \<And>d. P1 d trm2\<rbrakk> \<Longrightarrow> P1 c (Ap trm1 trm2)"
    46   and     a2: "\<And>trm1 trm2 c. \<lbrakk>\<And>d. P1 d trm1; \<And>d. P1 d trm2\<rbrakk> \<Longrightarrow> P1 c (Ap trm1 trm2)"
    39   and     a3: "\<And>name trm c. \<lbrakk>atom name \<sharp> c; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lm name trm)" 
    47   and     a3: "\<And>name trm c. \<lbrakk>atom name \<sharp> c; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lm name trm)" 
    40   and     a4: "\<And>lts trm c. \<lbrakk>bn lts \<sharp>* c; \<And>d. P2 d lts; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lt lts trm)"
    48   and     a4: "\<And>lts trm c. \<lbrakk>bn lts \<sharp>* (c, Lt lts trm); \<And>d. P2 d lts; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lt lts trm)"
    41   and     a5: "\<And>c. P2 c Lnil"
    49   and     a5: "\<And>c. P2 c Lnil"
    42   and     a6: "\<And>name trm lts c. \<lbrakk>\<And>d. P1 d trm; \<And>d. P2 d lts\<rbrakk> \<Longrightarrow> P2 c (Lcons name trm lts)"
    50   and     a6: "\<And>name trm lts c. \<lbrakk>\<And>d. P1 d trm; \<And>d. P2 d lts\<rbrakk> \<Longrightarrow> P2 c (Lcons name trm lts)"
    43   shows "P1 c t" and "P2 c l"
    51   shows "P1 c t" and "P2 c l"
    44 proof -
    52 proof -
    45   have "(\<And>(p::perm) (c::'a::fs). P1 c (p \<bullet> t))" and
    53   have "(\<And>(p::perm) (c::'a::fs). P1 c (p \<bullet> t))" and
    67     apply(simp add: finite_supp)
    75     apply(simp add: finite_supp)
    68     apply(simp add: finite_supp)
    76     apply(simp add: finite_supp)
    69     apply(simp add: fresh_def)
    77     apply(simp add: fresh_def)
    70     apply(simp add: trm_lts.fv[simplified trm_lts.supp])
    78     apply(simp add: trm_lts.fv[simplified trm_lts.supp])
    71     apply(simp)
    79     apply(simp)
    72     apply(subgoal_tac "\<exists>q. (q \<bullet> bn (p \<bullet> lts)) \<sharp>* c \<and> supp (Lt (p \<bullet> lts) (p \<bullet> trm)) \<sharp>* q")
    80     apply(subgoal_tac "\<exists>q. (q \<bullet> bn (p \<bullet> lts)) \<sharp>* c \<and> supp (Abs (bn (p \<bullet> lts)) (p \<bullet> trm)) \<sharp>* q")
    73     apply(erule exE)
    81     apply(erule exE)
       
    82     (* HERE *)
    74     apply(rule_tac t="Lt (p \<bullet> lts) (p \<bullet> trm)" 
    83     apply(rule_tac t="Lt (p \<bullet> lts) (p \<bullet> trm)" 
    75                and s="q \<bullet> Lt (p \<bullet> lts) (p \<bullet> trm)" in subst)
    84                and s="Lt (permute_bn q (p \<bullet> lts)) (q \<bullet> p \<bullet> trm)" in subst)
    76     apply(rule supp_perm_eq)
    85     defer
    77     apply(simp)
       
    78     apply(simp)
       
    79     apply(rule a4)
    86     apply(rule a4)
       
    87     defer
    80     apply(simp add: eqvts)
    88     apply(simp add: eqvts)
       
    89     apply(simp add: fresh_star_prod)
       
    90     apply(simp add: fresh_star_def)
       
    91     apply(simp add: fresh_def)
       
    92     apply(simp add: trm_lts.fv[simplified trm_lts.supp])
    81     apply(subst permute_plus[symmetric])
    93     apply(subst permute_plus[symmetric])
    82     apply(blast)
    94     apply(blast)
    83     apply(subst permute_plus[symmetric])
    95     apply(subst permute_plus[symmetric])
    84     apply(blast)
    96     apply(blast)
    85     apply(rule at_set_avoiding2)
    97     apply(rule at_set_avoiding2)
    87     defer
    99     defer
    88     apply(simp add: finite_supp)
   100     apply(simp add: finite_supp)
    89     apply(simp add: finite_supp)
   101     apply(simp add: finite_supp)
    90     apply(simp add: fresh_star_def)
   102     apply(simp add: fresh_star_def)
    91     apply(simp add: fresh_def)
   103     apply(simp add: fresh_def)
       
   104     thm trm_lts.fv[simplified trm_lts.supp]
    92     apply(simp add: trm_lts.fv[simplified trm_lts.supp])
   105     apply(simp add: trm_lts.fv[simplified trm_lts.supp])
       
   106     apply(simp add: alpha_bn_eq_iff)
    93     defer
   107     defer
    94     apply(simp)
   108     apply(simp)
    95     apply(rule a5)
   109     apply(rule a5)
    96     apply(simp)
   110     apply(simp)
    97     apply(rule a6)
   111     apply(rule a6)