1 (* Title: QuotBase.thy |
|
2 Author: Cezary Kaliszyk and Christian Urban |
|
3 *) |
|
4 |
|
5 theory QuotBase |
|
6 imports Plain ATP_Linkup |
|
7 begin |
|
8 |
|
9 text {* |
|
10 Basic definition for equivalence relations |
|
11 that are represented by predicates. |
|
12 *} |
|
13 |
|
14 definition |
|
15 "equivp E \<longleftrightarrow> (\<forall>x y. E x y = (E x = E y))" |
|
16 |
|
17 definition |
|
18 "reflp E \<longleftrightarrow> (\<forall>x. E x x)" |
|
19 |
|
20 definition |
|
21 "symp E \<longleftrightarrow> (\<forall>x y. E x y \<longrightarrow> E y x)" |
|
22 |
|
23 definition |
|
24 "transp E \<longleftrightarrow> (\<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z)" |
|
25 |
|
26 lemma equivp_reflp_symp_transp: |
|
27 shows "equivp E = (reflp E \<and> symp E \<and> transp E)" |
|
28 unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq |
|
29 by blast |
|
30 |
|
31 lemma equivp_reflp: |
|
32 shows "equivp E \<Longrightarrow> E x x" |
|
33 by (simp only: equivp_reflp_symp_transp reflp_def) |
|
34 |
|
35 lemma equivp_symp: |
|
36 shows "equivp E \<Longrightarrow> E x y \<Longrightarrow> E y x" |
|
37 by (metis equivp_reflp_symp_transp symp_def) |
|
38 |
|
39 lemma equivp_transp: |
|
40 shows "equivp E \<Longrightarrow> E x y \<Longrightarrow> E y z \<Longrightarrow> E x z" |
|
41 by (metis equivp_reflp_symp_transp transp_def) |
|
42 |
|
43 lemma equivpI: |
|
44 assumes "reflp R" "symp R" "transp R" |
|
45 shows "equivp R" |
|
46 using assms by (simp add: equivp_reflp_symp_transp) |
|
47 |
|
48 lemma eq_imp_rel: |
|
49 shows "equivp R \<Longrightarrow> a = b \<longrightarrow> R a b" |
|
50 by (simp add: equivp_reflp) |
|
51 |
|
52 lemma identity_equivp: |
|
53 shows "equivp (op =)" |
|
54 unfolding equivp_def |
|
55 by auto |
|
56 |
|
57 |
|
58 text {* Partial equivalences: not yet used anywhere *} |
|
59 definition |
|
60 "part_equivp E \<longleftrightarrow> ((\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y))))" |
|
61 |
|
62 lemma equivp_implies_part_equivp: |
|
63 assumes a: "equivp E" |
|
64 shows "part_equivp E" |
|
65 using a |
|
66 unfolding equivp_def part_equivp_def |
|
67 by auto |
|
68 |
|
69 text {* Composition of Relations *} |
|
70 |
|
71 abbreviation |
|
72 rel_conj (infixr "OOO" 75) |
|
73 where |
|
74 "r1 OOO r2 \<equiv> r1 OO r2 OO r1" |
|
75 |
|
76 lemma eq_comp_r: |
|
77 shows "((op =) OOO R) = R" |
|
78 by (auto simp add: expand_fun_eq) |
|
79 |
|
80 section {* Respects predicate *} |
|
81 |
|
82 definition |
|
83 Respects |
|
84 where |
|
85 "Respects R x \<longleftrightarrow> (R x x)" |
|
86 |
|
87 lemma in_respects: |
|
88 shows "(x \<in> Respects R) = R x x" |
|
89 unfolding mem_def Respects_def |
|
90 by simp |
|
91 |
|
92 section {* Function map and function relation *} |
|
93 |
|
94 definition |
|
95 fun_map (infixr "--->" 55) |
|
96 where |
|
97 [simp]: "fun_map f g h x = g (h (f x))" |
|
98 |
|
99 definition |
|
100 fun_rel (infixr "===>" 55) |
|
101 where |
|
102 [simp]: "fun_rel E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))" |
|
103 |
|
104 |
|
105 lemma fun_map_id: |
|
106 shows "(id ---> id) = id" |
|
107 by (simp add: expand_fun_eq id_def) |
|
108 |
|
109 lemma fun_rel_eq: |
|
110 shows "((op =) ===> (op =)) = (op =)" |
|
111 by (simp add: expand_fun_eq) |
|
112 |
|
113 lemma fun_rel_id: |
|
114 assumes a: "\<And>x y. R1 x y \<Longrightarrow> R2 (f x) (g y)" |
|
115 shows "(R1 ===> R2) f g" |
|
116 using a by simp |
|
117 |
|
118 lemma fun_rel_id_asm: |
|
119 assumes a: "\<And>x y. R1 x y \<Longrightarrow> (A \<longrightarrow> R2 (f x) (g y))" |
|
120 shows "A \<longrightarrow> (R1 ===> R2) f g" |
|
121 using a by auto |
|
122 |
|
123 |
|
124 section {* Quotient Predicate *} |
|
125 |
|
126 definition |
|
127 "Quotient E Abs Rep \<longleftrightarrow> |
|
128 (\<forall>a. Abs (Rep a) = a) \<and> (\<forall>a. E (Rep a) (Rep a)) \<and> |
|
129 (\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))" |
|
130 |
|
131 lemma Quotient_abs_rep: |
|
132 assumes a: "Quotient E Abs Rep" |
|
133 shows "Abs (Rep a) = a" |
|
134 using a |
|
135 unfolding Quotient_def |
|
136 by simp |
|
137 |
|
138 lemma Quotient_rep_reflp: |
|
139 assumes a: "Quotient E Abs Rep" |
|
140 shows "E (Rep a) (Rep a)" |
|
141 using a |
|
142 unfolding Quotient_def |
|
143 by blast |
|
144 |
|
145 lemma Quotient_rel: |
|
146 assumes a: "Quotient E Abs Rep" |
|
147 shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))" |
|
148 using a |
|
149 unfolding Quotient_def |
|
150 by blast |
|
151 |
|
152 lemma Quotient_rel_rep: |
|
153 assumes a: "Quotient R Abs Rep" |
|
154 shows "R (Rep a) (Rep b) = (a = b)" |
|
155 using a |
|
156 unfolding Quotient_def |
|
157 by metis |
|
158 |
|
159 lemma Quotient_rep_abs: |
|
160 assumes a: "Quotient R Abs Rep" |
|
161 shows "R r r \<Longrightarrow> R (Rep (Abs r)) r" |
|
162 using a unfolding Quotient_def |
|
163 by blast |
|
164 |
|
165 lemma Quotient_rel_abs: |
|
166 assumes a: "Quotient E Abs Rep" |
|
167 shows "E r s \<Longrightarrow> Abs r = Abs s" |
|
168 using a unfolding Quotient_def |
|
169 by blast |
|
170 |
|
171 lemma Quotient_symp: |
|
172 assumes a: "Quotient E Abs Rep" |
|
173 shows "symp E" |
|
174 using a unfolding Quotient_def symp_def |
|
175 by metis |
|
176 |
|
177 lemma Quotient_transp: |
|
178 assumes a: "Quotient E Abs Rep" |
|
179 shows "transp E" |
|
180 using a unfolding Quotient_def transp_def |
|
181 by metis |
|
182 |
|
183 lemma identity_quotient: |
|
184 shows "Quotient (op =) id id" |
|
185 unfolding Quotient_def id_def |
|
186 by blast |
|
187 |
|
188 lemma fun_quotient: |
|
189 assumes q1: "Quotient R1 abs1 rep1" |
|
190 and q2: "Quotient R2 abs2 rep2" |
|
191 shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" |
|
192 proof - |
|
193 have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a" |
|
194 using q1 q2 |
|
195 unfolding Quotient_def |
|
196 unfolding expand_fun_eq |
|
197 by simp |
|
198 moreover |
|
199 have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)" |
|
200 using q1 q2 |
|
201 unfolding Quotient_def |
|
202 by (simp (no_asm)) (metis) |
|
203 moreover |
|
204 have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and> |
|
205 (rep1 ---> abs2) r = (rep1 ---> abs2) s)" |
|
206 unfolding expand_fun_eq |
|
207 apply(auto) |
|
208 using q1 q2 unfolding Quotient_def |
|
209 apply(metis) |
|
210 using q1 q2 unfolding Quotient_def |
|
211 apply(metis) |
|
212 using q1 q2 unfolding Quotient_def |
|
213 apply(metis) |
|
214 using q1 q2 unfolding Quotient_def |
|
215 apply(metis) |
|
216 done |
|
217 ultimately |
|
218 show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" |
|
219 unfolding Quotient_def by blast |
|
220 qed |
|
221 |
|
222 lemma abs_o_rep: |
|
223 assumes a: "Quotient R Abs Rep" |
|
224 shows "Abs o Rep = id" |
|
225 unfolding expand_fun_eq |
|
226 by (simp add: Quotient_abs_rep[OF a]) |
|
227 |
|
228 lemma equals_rsp: |
|
229 assumes q: "Quotient R Abs Rep" |
|
230 and a: "R xa xb" "R ya yb" |
|
231 shows "R xa ya = R xb yb" |
|
232 using a Quotient_symp[OF q] Quotient_transp[OF q] |
|
233 unfolding symp_def transp_def |
|
234 by blast |
|
235 |
|
236 lemma lambda_prs: |
|
237 assumes q1: "Quotient R1 Abs1 Rep1" |
|
238 and q2: "Quotient R2 Abs2 Rep2" |
|
239 shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)" |
|
240 unfolding expand_fun_eq |
|
241 using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] |
|
242 by simp |
|
243 |
|
244 lemma lambda_prs1: |
|
245 assumes q1: "Quotient R1 Abs1 Rep1" |
|
246 and q2: "Quotient R2 Abs2 Rep2" |
|
247 shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)" |
|
248 unfolding expand_fun_eq |
|
249 using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] |
|
250 by simp |
|
251 |
|
252 lemma rep_abs_rsp: |
|
253 assumes q: "Quotient R Abs Rep" |
|
254 and a: "R x1 x2" |
|
255 shows "R x1 (Rep (Abs x2))" |
|
256 using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q] |
|
257 by metis |
|
258 |
|
259 lemma rep_abs_rsp_left: |
|
260 assumes q: "Quotient R Abs Rep" |
|
261 and a: "R x1 x2" |
|
262 shows "R (Rep (Abs x1)) x2" |
|
263 using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q] |
|
264 by metis |
|
265 |
|
266 text{* |
|
267 In the following theorem R1 can be instantiated with anything, |
|
268 but we know some of the types of the Rep and Abs functions; |
|
269 so by solving Quotient assumptions we can get a unique R1 that |
|
270 will be provable; which is why we need to use apply_rsp and |
|
271 not the primed version *} |
|
272 |
|
273 lemma apply_rsp: |
|
274 fixes f g::"'a \<Rightarrow> 'c" |
|
275 assumes q: "Quotient R1 Abs1 Rep1" |
|
276 and a: "(R1 ===> R2) f g" "R1 x y" |
|
277 shows "R2 (f x) (g y)" |
|
278 using a by simp |
|
279 |
|
280 lemma apply_rsp': |
|
281 assumes a: "(R1 ===> R2) f g" "R1 x y" |
|
282 shows "R2 (f x) (g y)" |
|
283 using a by simp |
|
284 |
|
285 section {* lemmas for regularisation of ball and bex *} |
|
286 |
|
287 lemma ball_reg_eqv: |
|
288 fixes P :: "'a \<Rightarrow> bool" |
|
289 assumes a: "equivp R" |
|
290 shows "Ball (Respects R) P = (All P)" |
|
291 using a |
|
292 unfolding equivp_def |
|
293 by (auto simp add: in_respects) |
|
294 |
|
295 lemma bex_reg_eqv: |
|
296 fixes P :: "'a \<Rightarrow> bool" |
|
297 assumes a: "equivp R" |
|
298 shows "Bex (Respects R) P = (Ex P)" |
|
299 using a |
|
300 unfolding equivp_def |
|
301 by (auto simp add: in_respects) |
|
302 |
|
303 lemma ball_reg_right: |
|
304 assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x" |
|
305 shows "All P \<longrightarrow> Ball R Q" |
|
306 using a by (metis COMBC_def Collect_def Collect_mem_eq) |
|
307 |
|
308 lemma bex_reg_left: |
|
309 assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x" |
|
310 shows "Bex R Q \<longrightarrow> Ex P" |
|
311 using a by (metis COMBC_def Collect_def Collect_mem_eq) |
|
312 |
|
313 lemma ball_reg_left: |
|
314 assumes a: "equivp R" |
|
315 shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P" |
|
316 using a by (metis equivp_reflp in_respects) |
|
317 |
|
318 lemma bex_reg_right: |
|
319 assumes a: "equivp R" |
|
320 shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P" |
|
321 using a by (metis equivp_reflp in_respects) |
|
322 |
|
323 lemma ball_reg_eqv_range: |
|
324 fixes P::"'a \<Rightarrow> bool" |
|
325 and x::"'a" |
|
326 assumes a: "equivp R2" |
|
327 shows "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))" |
|
328 apply(rule iffI) |
|
329 apply(rule allI) |
|
330 apply(drule_tac x="\<lambda>y. f x" in bspec) |
|
331 apply(simp add: in_respects) |
|
332 apply(rule impI) |
|
333 using a equivp_reflp_symp_transp[of "R2"] |
|
334 apply(simp add: reflp_def) |
|
335 apply(simp) |
|
336 apply(simp) |
|
337 done |
|
338 |
|
339 lemma bex_reg_eqv_range: |
|
340 assumes a: "equivp R2" |
|
341 shows "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))" |
|
342 apply(auto) |
|
343 apply(rule_tac x="\<lambda>y. f x" in bexI) |
|
344 apply(simp) |
|
345 apply(simp add: Respects_def in_respects) |
|
346 apply(rule impI) |
|
347 using a equivp_reflp_symp_transp[of "R2"] |
|
348 apply(simp add: reflp_def) |
|
349 done |
|
350 |
|
351 lemma all_reg: |
|
352 assumes a: "!x :: 'a. (P x --> Q x)" |
|
353 and b: "All P" |
|
354 shows "All Q" |
|
355 using a b by (metis) |
|
356 |
|
357 lemma ex_reg: |
|
358 assumes a: "!x :: 'a. (P x --> Q x)" |
|
359 and b: "Ex P" |
|
360 shows "Ex Q" |
|
361 using a b by metis |
|
362 |
|
363 lemma ball_reg: |
|
364 assumes a: "!x :: 'a. (R x --> P x --> Q x)" |
|
365 and b: "Ball R P" |
|
366 shows "Ball R Q" |
|
367 using a b by (metis COMBC_def Collect_def Collect_mem_eq) |
|
368 |
|
369 lemma bex_reg: |
|
370 assumes a: "!x :: 'a. (R x --> P x --> Q x)" |
|
371 and b: "Bex R P" |
|
372 shows "Bex R Q" |
|
373 using a b by (metis COMBC_def Collect_def Collect_mem_eq) |
|
374 |
|
375 lemma ball_all_comm: |
|
376 assumes "\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)" |
|
377 shows "(\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y)" |
|
378 using assms by auto |
|
379 |
|
380 lemma bex_ex_comm: |
|
381 assumes "(\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)" |
|
382 shows "(\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y)" |
|
383 using assms by auto |
|
384 |
|
385 section {* Bounded abstraction *} |
|
386 |
|
387 definition |
|
388 Babs :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" |
|
389 where |
|
390 "x \<in> p \<Longrightarrow> Babs p m x = m x" |
|
391 |
|
392 lemma babs_rsp: |
|
393 assumes q: "Quotient R1 Abs1 Rep1" |
|
394 and a: "(R1 ===> R2) f g" |
|
395 shows "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)" |
|
396 apply (auto simp add: Babs_def in_respects) |
|
397 apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1") |
|
398 using a apply (simp add: Babs_def) |
|
399 apply (simp add: in_respects) |
|
400 using Quotient_rel[OF q] |
|
401 by metis |
|
402 |
|
403 lemma babs_prs: |
|
404 assumes q1: "Quotient R1 Abs1 Rep1" |
|
405 and q2: "Quotient R2 Abs2 Rep2" |
|
406 shows "((Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f))) = f" |
|
407 apply (rule ext) |
|
408 apply (simp) |
|
409 apply (subgoal_tac "Rep1 x \<in> Respects R1") |
|
410 apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]) |
|
411 apply (simp add: in_respects Quotient_rel_rep[OF q1]) |
|
412 done |
|
413 |
|
414 lemma babs_simp: |
|
415 assumes q: "Quotient R1 Abs Rep" |
|
416 shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)" |
|
417 apply(rule iffI) |
|
418 apply(simp_all only: babs_rsp[OF q]) |
|
419 apply(auto simp add: Babs_def) |
|
420 apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1") |
|
421 apply(metis Babs_def) |
|
422 apply (simp add: in_respects) |
|
423 using Quotient_rel[OF q] |
|
424 by metis |
|
425 |
|
426 (* If a user proves that a particular functional relation |
|
427 is an equivalence this may be useful in regularising *) |
|
428 lemma babs_reg_eqv: |
|
429 shows "equivp R \<Longrightarrow> Babs (Respects R) P = P" |
|
430 by (simp add: expand_fun_eq Babs_def in_respects equivp_reflp) |
|
431 |
|
432 |
|
433 (* 3 lemmas needed for proving repabs_inj *) |
|
434 lemma ball_rsp: |
|
435 assumes a: "(R ===> (op =)) f g" |
|
436 shows "Ball (Respects R) f = Ball (Respects R) g" |
|
437 using a by (simp add: Ball_def in_respects) |
|
438 |
|
439 lemma bex_rsp: |
|
440 assumes a: "(R ===> (op =)) f g" |
|
441 shows "(Bex (Respects R) f = Bex (Respects R) g)" |
|
442 using a by (simp add: Bex_def in_respects) |
|
443 |
|
444 lemma bex1_rsp: |
|
445 assumes a: "(R ===> (op =)) f g" |
|
446 shows "Ex1 (\<lambda>x. x \<in> Respects R \<and> f x) = Ex1 (\<lambda>x. x \<in> Respects R \<and> g x)" |
|
447 using a |
|
448 by (simp add: Ex1_def in_respects) auto |
|
449 |
|
450 (* 2 lemmas needed for cleaning of quantifiers *) |
|
451 lemma all_prs: |
|
452 assumes a: "Quotient R absf repf" |
|
453 shows "Ball (Respects R) ((absf ---> id) f) = All f" |
|
454 using a unfolding Quotient_def Ball_def in_respects fun_map_def id_apply |
|
455 by metis |
|
456 |
|
457 lemma ex_prs: |
|
458 assumes a: "Quotient R absf repf" |
|
459 shows "Bex (Respects R) ((absf ---> id) f) = Ex f" |
|
460 using a unfolding Quotient_def Bex_def in_respects fun_map_def id_apply |
|
461 by metis |
|
462 |
|
463 section {* Bex1_rel quantifier *} |
|
464 |
|
465 definition |
|
466 Bex1_rel :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" |
|
467 where |
|
468 "Bex1_rel R P \<longleftrightarrow> (\<exists>x \<in> Respects R. P x) \<and> (\<forall>x \<in> Respects R. \<forall>y \<in> Respects R. ((P x \<and> P y) \<longrightarrow> (R x y)))" |
|
469 |
|
470 lemma bex1_rel_aux: |
|
471 "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R x\<rbrakk> \<Longrightarrow> Bex1_rel R y" |
|
472 unfolding Bex1_rel_def |
|
473 apply (erule conjE)+ |
|
474 apply (erule bexE) |
|
475 apply rule |
|
476 apply (rule_tac x="xa" in bexI) |
|
477 apply metis |
|
478 apply metis |
|
479 apply rule+ |
|
480 apply (erule_tac x="xaa" in ballE) |
|
481 prefer 2 |
|
482 apply (metis) |
|
483 apply (erule_tac x="ya" in ballE) |
|
484 prefer 2 |
|
485 apply (metis) |
|
486 apply (metis in_respects) |
|
487 done |
|
488 |
|
489 lemma bex1_rel_aux2: |
|
490 "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R y\<rbrakk> \<Longrightarrow> Bex1_rel R x" |
|
491 unfolding Bex1_rel_def |
|
492 apply (erule conjE)+ |
|
493 apply (erule bexE) |
|
494 apply rule |
|
495 apply (rule_tac x="xa" in bexI) |
|
496 apply metis |
|
497 apply metis |
|
498 apply rule+ |
|
499 apply (erule_tac x="xaa" in ballE) |
|
500 prefer 2 |
|
501 apply (metis) |
|
502 apply (erule_tac x="ya" in ballE) |
|
503 prefer 2 |
|
504 apply (metis) |
|
505 apply (metis in_respects) |
|
506 done |
|
507 |
|
508 lemma bex1_rel_rsp: |
|
509 assumes a: "Quotient R absf repf" |
|
510 shows "((R ===> op =) ===> op =) (Bex1_rel R) (Bex1_rel R)" |
|
511 apply simp |
|
512 apply clarify |
|
513 apply rule |
|
514 apply (simp_all add: bex1_rel_aux bex1_rel_aux2) |
|
515 apply (erule bex1_rel_aux2) |
|
516 apply assumption |
|
517 done |
|
518 |
|
519 |
|
520 lemma ex1_prs: |
|
521 assumes a: "Quotient R absf repf" |
|
522 shows "((absf ---> id) ---> id) (Bex1_rel R) f = Ex1 f" |
|
523 apply simp |
|
524 apply (subst Bex1_rel_def) |
|
525 apply (subst Bex_def) |
|
526 apply (subst Ex1_def) |
|
527 apply simp |
|
528 apply rule |
|
529 apply (erule conjE)+ |
|
530 apply (erule_tac exE) |
|
531 apply (erule conjE) |
|
532 apply (subgoal_tac "\<forall>y. R y y \<longrightarrow> f (absf y) \<longrightarrow> R x y") |
|
533 apply (rule_tac x="absf x" in exI) |
|
534 apply (simp) |
|
535 apply rule+ |
|
536 using a unfolding Quotient_def |
|
537 apply metis |
|
538 apply rule+ |
|
539 apply (erule_tac x="x" in ballE) |
|
540 apply (erule_tac x="y" in ballE) |
|
541 apply simp |
|
542 apply (simp add: in_respects) |
|
543 apply (simp add: in_respects) |
|
544 apply (erule_tac exE) |
|
545 apply rule |
|
546 apply (rule_tac x="repf x" in exI) |
|
547 apply (simp only: in_respects) |
|
548 apply rule |
|
549 apply (metis Quotient_rel_rep[OF a]) |
|
550 using a unfolding Quotient_def apply (simp) |
|
551 apply rule+ |
|
552 using a unfolding Quotient_def in_respects |
|
553 apply metis |
|
554 done |
|
555 |
|
556 lemma bex1_bexeq_reg: "(\<exists>!x\<in>Respects R. P x) \<longrightarrow> (Bex1_rel R (\<lambda>x. P x))" |
|
557 apply (simp add: Ex1_def Bex1_rel_def in_respects) |
|
558 apply clarify |
|
559 apply auto |
|
560 apply (rule bexI) |
|
561 apply assumption |
|
562 apply (simp add: in_respects) |
|
563 apply (simp add: in_respects) |
|
564 apply auto |
|
565 done |
|
566 |
|
567 section {* Various respects and preserve lemmas *} |
|
568 |
|
569 lemma quot_rel_rsp: |
|
570 assumes a: "Quotient R Abs Rep" |
|
571 shows "(R ===> R ===> op =) R R" |
|
572 apply(rule fun_rel_id)+ |
|
573 apply(rule equals_rsp[OF a]) |
|
574 apply(assumption)+ |
|
575 done |
|
576 |
|
577 lemma o_prs: |
|
578 assumes q1: "Quotient R1 Abs1 Rep1" |
|
579 and q2: "Quotient R2 Abs2 Rep2" |
|
580 and q3: "Quotient R3 Abs3 Rep3" |
|
581 shows "(Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g)) = f o g" |
|
582 using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3] |
|
583 unfolding o_def expand_fun_eq by simp |
|
584 |
|
585 lemma o_rsp: |
|
586 assumes q1: "Quotient R1 Abs1 Rep1" |
|
587 and q2: "Quotient R2 Abs2 Rep2" |
|
588 and q3: "Quotient R3 Abs3 Rep3" |
|
589 and a1: "(R2 ===> R3) f1 f2" |
|
590 and a2: "(R1 ===> R2) g1 g2" |
|
591 shows "(R1 ===> R3) (f1 o g1) (f2 o g2)" |
|
592 using a1 a2 unfolding o_def expand_fun_eq |
|
593 by (auto) |
|
594 |
|
595 lemma cond_prs: |
|
596 assumes a: "Quotient R absf repf" |
|
597 shows "absf (if a then repf b else repf c) = (if a then b else c)" |
|
598 using a unfolding Quotient_def by auto |
|
599 |
|
600 lemma if_prs: |
|
601 assumes q: "Quotient R Abs Rep" |
|
602 shows "Abs (If a (Rep b) (Rep c)) = If a b c" |
|
603 using Quotient_abs_rep[OF q] by auto |
|
604 |
|
605 (* q not used *) |
|
606 lemma if_rsp: |
|
607 assumes q: "Quotient R Abs Rep" |
|
608 and a: "a1 = a2" "R b1 b2" "R c1 c2" |
|
609 shows "R (If a1 b1 c1) (If a2 b2 c2)" |
|
610 using a by auto |
|
611 |
|
612 lemma let_prs: |
|
613 assumes q1: "Quotient R1 Abs1 Rep1" |
|
614 and q2: "Quotient R2 Abs2 Rep2" |
|
615 shows "Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f)) = Let x f" |
|
616 using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto |
|
617 |
|
618 lemma let_rsp: |
|
619 assumes q1: "Quotient R1 Abs1 Rep1" |
|
620 and a1: "(R1 ===> R2) f g" |
|
621 and a2: "R1 x y" |
|
622 shows "R2 ((Let x f)::'c) ((Let y g)::'c)" |
|
623 using apply_rsp[OF q1 a1] a2 by auto |
|
624 |
|
625 end |
|
626 |
|