diff -r dd6ce36a0616 -r 243a5ceaa088 Quot/QuotBase.thy --- a/Quot/QuotBase.thy Wed Feb 10 21:39:40 2010 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,626 +0,0 @@ -(* Title: QuotBase.thy - Author: Cezary Kaliszyk and Christian Urban -*) - -theory QuotBase -imports Plain ATP_Linkup -begin - -text {* - Basic definition for equivalence relations - that are represented by predicates. -*} - -definition - "equivp E \ (\x y. E x y = (E x = E y))" - -definition - "reflp E \ (\x. E x x)" - -definition - "symp E \ (\x y. E x y \ E y x)" - -definition - "transp E \ (\x y z. E x y \ E y z \ E x z)" - -lemma equivp_reflp_symp_transp: - shows "equivp E = (reflp E \ symp E \ transp E)" - unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq - by blast - -lemma equivp_reflp: - shows "equivp E \ E x x" - by (simp only: equivp_reflp_symp_transp reflp_def) - -lemma equivp_symp: - shows "equivp E \ E x y \ E y x" - by (metis equivp_reflp_symp_transp symp_def) - -lemma equivp_transp: - shows "equivp E \ E x y \ E y z \ E x z" - by (metis equivp_reflp_symp_transp transp_def) - -lemma equivpI: - assumes "reflp R" "symp R" "transp R" - shows "equivp R" - using assms by (simp add: equivp_reflp_symp_transp) - -lemma eq_imp_rel: - shows "equivp R \ a = b \ R a b" - by (simp add: equivp_reflp) - -lemma identity_equivp: - shows "equivp (op =)" - unfolding equivp_def - by auto - - -text {* Partial equivalences: not yet used anywhere *} -definition - "part_equivp E \ ((\x. E x x) \ (\x y. E x y = (E x x \ E y y \ (E x = E y))))" - -lemma equivp_implies_part_equivp: - assumes a: "equivp E" - shows "part_equivp E" - using a - unfolding equivp_def part_equivp_def - by auto - -text {* Composition of Relations *} - -abbreviation - rel_conj (infixr "OOO" 75) -where - "r1 OOO r2 \ r1 OO r2 OO r1" - -lemma eq_comp_r: - shows "((op =) OOO R) = R" - by (auto simp add: expand_fun_eq) - -section {* Respects predicate *} - -definition - Respects -where - "Respects R x \ (R x x)" - -lemma in_respects: - shows "(x \ Respects R) = R x x" - unfolding mem_def Respects_def - by simp - -section {* Function map and function relation *} - -definition - fun_map (infixr "--->" 55) -where -[simp]: "fun_map f g h x = g (h (f x))" - -definition - fun_rel (infixr "===>" 55) -where -[simp]: "fun_rel E1 E2 f g = (\x y. E1 x y \ E2 (f x) (g y))" - - -lemma fun_map_id: - shows "(id ---> id) = id" - by (simp add: expand_fun_eq id_def) - -lemma fun_rel_eq: - shows "((op =) ===> (op =)) = (op =)" - by (simp add: expand_fun_eq) - -lemma fun_rel_id: - assumes a: "\x y. R1 x y \ R2 (f x) (g y)" - shows "(R1 ===> R2) f g" - using a by simp - -lemma fun_rel_id_asm: - assumes a: "\x y. R1 x y \ (A \ R2 (f x) (g y))" - shows "A \ (R1 ===> R2) f g" - using a by auto - - -section {* Quotient Predicate *} - -definition - "Quotient E Abs Rep \ - (\a. Abs (Rep a) = a) \ (\a. E (Rep a) (Rep a)) \ - (\r s. E r s = (E r r \ E s s \ (Abs r = Abs s)))" - -lemma Quotient_abs_rep: - assumes a: "Quotient E Abs Rep" - shows "Abs (Rep a) = a" - using a - unfolding Quotient_def - by simp - -lemma Quotient_rep_reflp: - assumes a: "Quotient E Abs Rep" - shows "E (Rep a) (Rep a)" - using a - unfolding Quotient_def - by blast - -lemma Quotient_rel: - assumes a: "Quotient E Abs Rep" - shows " E r s = (E r r \ E s s \ (Abs r = Abs s))" - using a - unfolding Quotient_def - by blast - -lemma Quotient_rel_rep: - assumes a: "Quotient R Abs Rep" - shows "R (Rep a) (Rep b) = (a = b)" - using a - unfolding Quotient_def - by metis - -lemma Quotient_rep_abs: - assumes a: "Quotient R Abs Rep" - shows "R r r \ R (Rep (Abs r)) r" - using a unfolding Quotient_def - by blast - -lemma Quotient_rel_abs: - assumes a: "Quotient E Abs Rep" - shows "E r s \ Abs r = Abs s" - using a unfolding Quotient_def - by blast - -lemma Quotient_symp: - assumes a: "Quotient E Abs Rep" - shows "symp E" - using a unfolding Quotient_def symp_def - by metis - -lemma Quotient_transp: - assumes a: "Quotient E Abs Rep" - shows "transp E" - using a unfolding Quotient_def transp_def - by metis - -lemma identity_quotient: - shows "Quotient (op =) id id" - unfolding Quotient_def id_def - by blast - -lemma fun_quotient: - assumes q1: "Quotient R1 abs1 rep1" - and q2: "Quotient R2 abs2 rep2" - shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" -proof - - have "\a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a" - using q1 q2 - unfolding Quotient_def - unfolding expand_fun_eq - by simp - moreover - have "\a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)" - using q1 q2 - unfolding Quotient_def - by (simp (no_asm)) (metis) - moreover - have "\r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \ (R1 ===> R2) s s \ - (rep1 ---> abs2) r = (rep1 ---> abs2) s)" - unfolding expand_fun_eq - apply(auto) - using q1 q2 unfolding Quotient_def - apply(metis) - using q1 q2 unfolding Quotient_def - apply(metis) - using q1 q2 unfolding Quotient_def - apply(metis) - using q1 q2 unfolding Quotient_def - apply(metis) - done - ultimately - show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" - unfolding Quotient_def by blast -qed - -lemma abs_o_rep: - assumes a: "Quotient R Abs Rep" - shows "Abs o Rep = id" - unfolding expand_fun_eq - by (simp add: Quotient_abs_rep[OF a]) - -lemma equals_rsp: - assumes q: "Quotient R Abs Rep" - and a: "R xa xb" "R ya yb" - shows "R xa ya = R xb yb" - using a Quotient_symp[OF q] Quotient_transp[OF q] - unfolding symp_def transp_def - by blast - -lemma lambda_prs: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - shows "(Rep1 ---> Abs2) (\x. Rep2 (f (Abs1 x))) = (\x. f x)" - unfolding expand_fun_eq - using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] - by simp - -lemma lambda_prs1: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - shows "(Rep1 ---> Abs2) (\x. (Abs1 ---> Rep2) f x) = (\x. f x)" - unfolding expand_fun_eq - using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] - by simp - -lemma rep_abs_rsp: - assumes q: "Quotient R Abs Rep" - and a: "R x1 x2" - shows "R x1 (Rep (Abs x2))" - using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q] - by metis - -lemma rep_abs_rsp_left: - assumes q: "Quotient R Abs Rep" - and a: "R x1 x2" - shows "R (Rep (Abs x1)) x2" - using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q] - by metis - -text{* - In the following theorem R1 can be instantiated with anything, - but we know some of the types of the Rep and Abs functions; - so by solving Quotient assumptions we can get a unique R1 that - will be provable; which is why we need to use apply_rsp and - not the primed version *} - -lemma apply_rsp: - fixes f g::"'a \ 'c" - assumes q: "Quotient R1 Abs1 Rep1" - and a: "(R1 ===> R2) f g" "R1 x y" - shows "R2 (f x) (g y)" - using a by simp - -lemma apply_rsp': - assumes a: "(R1 ===> R2) f g" "R1 x y" - shows "R2 (f x) (g y)" - using a by simp - -section {* lemmas for regularisation of ball and bex *} - -lemma ball_reg_eqv: - fixes P :: "'a \ bool" - assumes a: "equivp R" - shows "Ball (Respects R) P = (All P)" - using a - unfolding equivp_def - by (auto simp add: in_respects) - -lemma bex_reg_eqv: - fixes P :: "'a \ bool" - assumes a: "equivp R" - shows "Bex (Respects R) P = (Ex P)" - using a - unfolding equivp_def - by (auto simp add: in_respects) - -lemma ball_reg_right: - assumes a: "\x. R x \ P x \ Q x" - shows "All P \ Ball R Q" - using a by (metis COMBC_def Collect_def Collect_mem_eq) - -lemma bex_reg_left: - assumes a: "\x. R x \ Q x \ P x" - shows "Bex R Q \ Ex P" - using a by (metis COMBC_def Collect_def Collect_mem_eq) - -lemma ball_reg_left: - assumes a: "equivp R" - shows "(\x. (Q x \ P x)) \ Ball (Respects R) Q \ All P" - using a by (metis equivp_reflp in_respects) - -lemma bex_reg_right: - assumes a: "equivp R" - shows "(\x. (Q x \ P x)) \ Ex Q \ Bex (Respects R) P" - using a by (metis equivp_reflp in_respects) - -lemma ball_reg_eqv_range: - fixes P::"'a \ bool" - and x::"'a" - assumes a: "equivp R2" - shows "(Ball (Respects (R1 ===> R2)) (\f. P (f x)) = All (\f. P (f x)))" - apply(rule iffI) - apply(rule allI) - apply(drule_tac x="\y. f x" in bspec) - apply(simp add: in_respects) - apply(rule impI) - using a equivp_reflp_symp_transp[of "R2"] - apply(simp add: reflp_def) - apply(simp) - apply(simp) - done - -lemma bex_reg_eqv_range: - assumes a: "equivp R2" - shows "(Bex (Respects (R1 ===> R2)) (\f. P (f x)) = Ex (\f. P (f x)))" - apply(auto) - apply(rule_tac x="\y. f x" in bexI) - apply(simp) - apply(simp add: Respects_def in_respects) - apply(rule impI) - using a equivp_reflp_symp_transp[of "R2"] - apply(simp add: reflp_def) - done - -lemma all_reg: - assumes a: "!x :: 'a. (P x --> Q x)" - and b: "All P" - shows "All Q" - using a b by (metis) - -lemma ex_reg: - assumes a: "!x :: 'a. (P x --> Q x)" - and b: "Ex P" - shows "Ex Q" - using a b by metis - -lemma ball_reg: - assumes a: "!x :: 'a. (R x --> P x --> Q x)" - and b: "Ball R P" - shows "Ball R Q" - using a b by (metis COMBC_def Collect_def Collect_mem_eq) - -lemma bex_reg: - assumes a: "!x :: 'a. (R x --> P x --> Q x)" - and b: "Bex R P" - shows "Bex R Q" - using a b by (metis COMBC_def Collect_def Collect_mem_eq) - -lemma ball_all_comm: - assumes "\y. (\x\P. A x y) \ (\x. B x y)" - shows "(\x\P. \y. A x y) \ (\x. \y. B x y)" - using assms by auto - -lemma bex_ex_comm: - assumes "(\y. \x. A x y) \ (\y. \x\P. B x y)" - shows "(\x. \y. A x y) \ (\x\P. \y. B x y)" - using assms by auto - -section {* Bounded abstraction *} - -definition - Babs :: "('a \ bool) \ ('a \ 'b) \ 'a \ 'b" -where - "x \ p \ Babs p m x = m x" - -lemma babs_rsp: - assumes q: "Quotient R1 Abs1 Rep1" - and a: "(R1 ===> R2) f g" - shows "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)" - apply (auto simp add: Babs_def in_respects) - apply (subgoal_tac "x \ Respects R1 \ y \ Respects R1") - using a apply (simp add: Babs_def) - apply (simp add: in_respects) - using Quotient_rel[OF q] - by metis - -lemma babs_prs: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - shows "((Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f))) = f" - apply (rule ext) - apply (simp) - apply (subgoal_tac "Rep1 x \ Respects R1") - apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]) - apply (simp add: in_respects Quotient_rel_rep[OF q1]) - done - -lemma babs_simp: - assumes q: "Quotient R1 Abs Rep" - shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)" - apply(rule iffI) - apply(simp_all only: babs_rsp[OF q]) - apply(auto simp add: Babs_def) - apply (subgoal_tac "x \ Respects R1 \ y \ Respects R1") - apply(metis Babs_def) - apply (simp add: in_respects) - using Quotient_rel[OF q] - by metis - -(* If a user proves that a particular functional relation - is an equivalence this may be useful in regularising *) -lemma babs_reg_eqv: - shows "equivp R \ Babs (Respects R) P = P" - by (simp add: expand_fun_eq Babs_def in_respects equivp_reflp) - - -(* 3 lemmas needed for proving repabs_inj *) -lemma ball_rsp: - assumes a: "(R ===> (op =)) f g" - shows "Ball (Respects R) f = Ball (Respects R) g" - using a by (simp add: Ball_def in_respects) - -lemma bex_rsp: - assumes a: "(R ===> (op =)) f g" - shows "(Bex (Respects R) f = Bex (Respects R) g)" - using a by (simp add: Bex_def in_respects) - -lemma bex1_rsp: - assumes a: "(R ===> (op =)) f g" - shows "Ex1 (\x. x \ Respects R \ f x) = Ex1 (\x. x \ Respects R \ g x)" - using a - by (simp add: Ex1_def in_respects) auto - -(* 2 lemmas needed for cleaning of quantifiers *) -lemma all_prs: - assumes a: "Quotient R absf repf" - shows "Ball (Respects R) ((absf ---> id) f) = All f" - using a unfolding Quotient_def Ball_def in_respects fun_map_def id_apply - by metis - -lemma ex_prs: - assumes a: "Quotient R absf repf" - shows "Bex (Respects R) ((absf ---> id) f) = Ex f" - using a unfolding Quotient_def Bex_def in_respects fun_map_def id_apply - by metis - -section {* Bex1_rel quantifier *} - -definition - Bex1_rel :: "('a \ 'a \ bool) \ ('a \ bool) \ bool" -where - "Bex1_rel R P \ (\x \ Respects R. P x) \ (\x \ Respects R. \y \ Respects R. ((P x \ P y) \ (R x y)))" - -lemma bex1_rel_aux: - "\\xa ya. R xa ya \ x xa = y ya; Bex1_rel R x\ \ Bex1_rel R y" - unfolding Bex1_rel_def - apply (erule conjE)+ - apply (erule bexE) - apply rule - apply (rule_tac x="xa" in bexI) - apply metis - apply metis - apply rule+ - apply (erule_tac x="xaa" in ballE) - prefer 2 - apply (metis) - apply (erule_tac x="ya" in ballE) - prefer 2 - apply (metis) - apply (metis in_respects) - done - -lemma bex1_rel_aux2: - "\\xa ya. R xa ya \ x xa = y ya; Bex1_rel R y\ \ Bex1_rel R x" - unfolding Bex1_rel_def - apply (erule conjE)+ - apply (erule bexE) - apply rule - apply (rule_tac x="xa" in bexI) - apply metis - apply metis - apply rule+ - apply (erule_tac x="xaa" in ballE) - prefer 2 - apply (metis) - apply (erule_tac x="ya" in ballE) - prefer 2 - apply (metis) - apply (metis in_respects) - done - -lemma bex1_rel_rsp: - assumes a: "Quotient R absf repf" - shows "((R ===> op =) ===> op =) (Bex1_rel R) (Bex1_rel R)" - apply simp - apply clarify - apply rule - apply (simp_all add: bex1_rel_aux bex1_rel_aux2) - apply (erule bex1_rel_aux2) - apply assumption - done - - -lemma ex1_prs: - assumes a: "Quotient R absf repf" - shows "((absf ---> id) ---> id) (Bex1_rel R) f = Ex1 f" -apply simp -apply (subst Bex1_rel_def) -apply (subst Bex_def) -apply (subst Ex1_def) -apply simp -apply rule - apply (erule conjE)+ - apply (erule_tac exE) - apply (erule conjE) - apply (subgoal_tac "\y. R y y \ f (absf y) \ R x y") - apply (rule_tac x="absf x" in exI) - apply (simp) - apply rule+ - using a unfolding Quotient_def - apply metis - apply rule+ - apply (erule_tac x="x" in ballE) - apply (erule_tac x="y" in ballE) - apply simp - apply (simp add: in_respects) - apply (simp add: in_respects) -apply (erule_tac exE) - apply rule - apply (rule_tac x="repf x" in exI) - apply (simp only: in_respects) - apply rule - apply (metis Quotient_rel_rep[OF a]) -using a unfolding Quotient_def apply (simp) -apply rule+ -using a unfolding Quotient_def in_respects -apply metis -done - -lemma bex1_bexeq_reg: "(\!x\Respects R. P x) \ (Bex1_rel R (\x. P x))" - apply (simp add: Ex1_def Bex1_rel_def in_respects) - apply clarify - apply auto - apply (rule bexI) - apply assumption - apply (simp add: in_respects) - apply (simp add: in_respects) - apply auto - done - -section {* Various respects and preserve lemmas *} - -lemma quot_rel_rsp: - assumes a: "Quotient R Abs Rep" - shows "(R ===> R ===> op =) R R" - apply(rule fun_rel_id)+ - apply(rule equals_rsp[OF a]) - apply(assumption)+ - done - -lemma o_prs: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - and q3: "Quotient R3 Abs3 Rep3" - shows "(Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g)) = f o g" - using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3] - unfolding o_def expand_fun_eq by simp - -lemma o_rsp: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - and q3: "Quotient R3 Abs3 Rep3" - and a1: "(R2 ===> R3) f1 f2" - and a2: "(R1 ===> R2) g1 g2" - shows "(R1 ===> R3) (f1 o g1) (f2 o g2)" - using a1 a2 unfolding o_def expand_fun_eq - by (auto) - -lemma cond_prs: - assumes a: "Quotient R absf repf" - shows "absf (if a then repf b else repf c) = (if a then b else c)" - using a unfolding Quotient_def by auto - -lemma if_prs: - assumes q: "Quotient R Abs Rep" - shows "Abs (If a (Rep b) (Rep c)) = If a b c" - using Quotient_abs_rep[OF q] by auto - -(* q not used *) -lemma if_rsp: - assumes q: "Quotient R Abs Rep" - and a: "a1 = a2" "R b1 b2" "R c1 c2" - shows "R (If a1 b1 c1) (If a2 b2 c2)" - using a by auto - -lemma let_prs: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - shows "Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f)) = Let x f" - using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto - -lemma let_rsp: - assumes q1: "Quotient R1 Abs1 Rep1" - and a1: "(R1 ===> R2) f g" - and a2: "R1 x y" - shows "R2 ((Let x f)::'c) ((Let y g)::'c)" - using apply_rsp[OF q1 a1] a2 by auto - -end -