Nominal/Ex/pi.thy
changeset 3096 18f20d75b463
equal deleted inserted replaced
3095:9e7047159f43 3096:18f20d75b463
       
     1 (* theory be Kirstin Peters *)
       
     2 
       
     3 theory pi
       
     4   imports "../Nominal2"
       
     5 begin
       
     6 
       
     7 atom_decl name
       
     8 
       
     9 subsection {* Capture-Avoiding Substitution of Names *}
       
    10 
       
    11 definition
       
    12   subst_name :: "name \<Rightarrow> name \<Rightarrow> name \<Rightarrow> name" ("_[_:::=_]" [110, 110, 110] 110)
       
    13 where
       
    14   "a[b:::=c] \<equiv> if (a = b) then c else a"
       
    15 
       
    16 declare subst_name_def[simp]
       
    17 
       
    18 lemma subst_name_mix_eqvt[eqvt]:
       
    19   fixes p :: perm
       
    20   and   a :: name
       
    21   and   b :: name
       
    22   and   c :: name
       
    23 
       
    24   shows "p \<bullet> (a[b:::=c]) = (p \<bullet> a)[(p \<bullet> b):::=(p \<bullet> c)]"
       
    25 proof -
       
    26   show ?thesis
       
    27     by(auto)
       
    28 qed
       
    29 
       
    30 nominal_primrec
       
    31   subst_name_list :: "name \<Rightarrow> (name \<times> name) list \<Rightarrow> name"
       
    32 where
       
    33   "subst_name_list a [] = a"
       
    34 | "subst_name_list a ((b, c)#xs) = (if (a = b) then c else (subst_name_list a xs))"
       
    35   apply(auto)
       
    36   apply(subgoal_tac "\<And>p x r. subst_name_list_graph x r \<Longrightarrow> subst_name_list_graph (p \<bullet> x) (p \<bullet> r)")
       
    37   unfolding eqvt_def
       
    38   apply(rule allI)
       
    39   apply(simp add: permute_fun_def)
       
    40   apply(rule ext)
       
    41   apply(rule ext)
       
    42   apply(simp add: permute_bool_def)
       
    43   apply(rule iffI)
       
    44   apply(drule_tac x="p" in meta_spec)
       
    45   apply(drule_tac x="- p \<bullet> x" in meta_spec)
       
    46   apply(drule_tac x="- p \<bullet> xa" in meta_spec)
       
    47   apply(simp)
       
    48   apply(drule_tac x="-p" in meta_spec)
       
    49   apply(drule_tac x="x" in meta_spec)
       
    50   apply(drule_tac x="xa" in meta_spec)
       
    51   apply(simp)
       
    52   apply(erule subst_name_list_graph.induct)
       
    53   apply(perm_simp)
       
    54   apply(rule subst_name_list_graph.intros)
       
    55   apply(perm_simp)
       
    56   apply(rule subst_name_list_graph.intros)
       
    57   apply(simp)
       
    58   apply(rule_tac y="b" in list.exhaust)
       
    59   by(auto)
       
    60 
       
    61 termination (eqvt)
       
    62   apply(relation "measure (\<lambda>(_, t). size t)")
       
    63   by(simp_all add: list.size)
       
    64 
       
    65 
       
    66 section {* The Synchronous Pi-Calculus *}
       
    67 
       
    68 subsection {* Syntax: Synchronous, Monadic Pi-Calculus with n-ary, Mixed Choice *}
       
    69 
       
    70 nominal_datatype
       
    71       guardedTerm_mix = Output name name piMix                     ("_!<_>\<onesuperior>._" [120, 120, 110] 110)
       
    72                       | Input name b::name P::piMix  binds b in P  ("_?<_>\<onesuperior>._" [120, 120, 110] 110)
       
    73                       | Tau piMix                                  ("<\<tau>\<onesuperior>>._" [110] 110)
       
    74   and sumList_mix     = SumNil                                     ("\<zero>\<onesuperior>")
       
    75                       | AddSummand guardedTerm_mix sumList_mix     (infixr "\<oplus>\<onesuperior>" 65)
       
    76   and piMix           = Res a::name P::piMix         binds a in P  ("<\<nu>_>\<onesuperior>_" [100, 100] 100)
       
    77                       | Par piMix piMix                            (infixr "\<parallel>\<onesuperior>" 85)
       
    78                       | Match name name piMix                      ("[_\<frown>\<onesuperior>_]_" [120, 120, 110] 110)
       
    79                       | Sum sumList_mix                            ("\<oplus>\<onesuperior>{_}" 90)
       
    80                       | Rep name b::name P::piMix    binds b in P  ("\<infinity>_?<_>\<onesuperior>._" [120, 120, 110] 110)
       
    81                       | Succ                                       ("succ\<onesuperior>")
       
    82 
       
    83 lemmas piMix_strong_induct  = guardedTerm_mix_sumList_mix_piMix.strong_induct
       
    84 lemmas piMix_fresh          = guardedTerm_mix_sumList_mix_piMix.fresh
       
    85 lemmas piMix_eq_iff         = guardedTerm_mix_sumList_mix_piMix.eq_iff
       
    86 lemmas piMix_distinct       = guardedTerm_mix_sumList_mix_piMix.distinct
       
    87 lemmas piMix_size           = guardedTerm_mix_sumList_mix_piMix.size
       
    88 
       
    89 subsection {* Alpha-Conversion Lemmata *}
       
    90 
       
    91 lemma alphaRes_mix:
       
    92   fixes a :: name
       
    93   and   P :: piMix
       
    94   and   z :: name
       
    95 
       
    96   assumes "atom z \<sharp> P"
       
    97 
       
    98   shows "<\<nu>a>\<onesuperior>P = <\<nu>z>\<onesuperior>((atom a \<rightleftharpoons> atom z) \<bullet> P)"
       
    99 proof(cases "a = z")
       
   100   assume "a = z"
       
   101   thus ?thesis
       
   102     by(simp)
       
   103 next
       
   104   assume "a \<noteq> z"
       
   105   thus ?thesis
       
   106     using assms
       
   107     by(simp add: piMix_eq_iff Abs1_eq_iff fresh_permute_left)
       
   108 qed
       
   109 
       
   110 lemma alphaInput_mix:
       
   111   fixes a :: name
       
   112   and   b :: name
       
   113   and   P :: piMix
       
   114   and   z :: name
       
   115 
       
   116   assumes "atom z \<sharp> P"
       
   117 
       
   118   shows "a?<b>\<onesuperior>.P = a?<z>\<onesuperior>.((atom b \<rightleftharpoons> atom z) \<bullet> P)"
       
   119 proof(cases "b = z")
       
   120   assume "b = z"
       
   121   thus ?thesis
       
   122     by(simp)
       
   123 next
       
   124   assume "b \<noteq> z"
       
   125   thus ?thesis
       
   126     using assms
       
   127     by(simp add: piMix_eq_iff Abs1_eq_iff fresh_permute_left)
       
   128 qed
       
   129 
       
   130 lemma alphaRep_mix:
       
   131   fixes a :: name
       
   132   and   b :: name
       
   133   and   P :: piMix
       
   134   and   z :: name
       
   135 
       
   136   assumes "atom z \<sharp> P"
       
   137 
       
   138   shows "\<infinity>a?<b>\<onesuperior>.P = \<infinity>a?<z>\<onesuperior>.((atom b \<rightleftharpoons> atom z) \<bullet> P)"
       
   139 proof(cases "b = z")
       
   140   assume "b = z"
       
   141   thus ?thesis
       
   142     by(simp)
       
   143 next
       
   144   assume "b \<noteq> z"
       
   145   thus ?thesis
       
   146     using assms
       
   147     by(simp add: piMix_eq_iff Abs1_eq_iff fresh_permute_left)
       
   148 qed
       
   149 
       
   150 subsection {* Capture-Avoiding Substitution of Names *}
       
   151 
       
   152 lemma testl:
       
   153   assumes a: "\<exists>y. f = Inl y"
       
   154   shows "(p \<bullet> (Sum_Type.Projl f)) = Sum_Type.Projl (p \<bullet> f)"
       
   155 using a by auto
       
   156 
       
   157 lemma testrr:
       
   158   assumes a: "\<exists>y. f = Inr (Inr y)"
       
   159   shows "(p \<bullet> (Sum_Type.Projr (Sum_Type.Projr f))) = Sum_Type.Projr (Sum_Type.Projr (p \<bullet> f))"
       
   160 using a by auto
       
   161 
       
   162 lemma testlr:
       
   163   assumes a: "\<exists>y. f = Inr (Inl y)"
       
   164   shows "(p \<bullet> (Sum_Type.Projl (Sum_Type.Projr f))) = Sum_Type.Projl (Sum_Type.Projr (p \<bullet> f))"
       
   165 using a by auto
       
   166 
       
   167 nominal_primrec (default "sum_case (\<lambda>x. Inl undefined) (sum_case (\<lambda>x. Inr (Inl undefined)) (\<lambda>x. Inr (Inr undefined)))")
       
   168   subsGuard_mix :: "guardedTerm_mix \<Rightarrow> name \<Rightarrow> name \<Rightarrow> guardedTerm_mix"  ("_[_::=\<onesuperior>\<onesuperior>_]" [100, 100, 100] 100) and
       
   169   subsList_mix  :: "sumList_mix \<Rightarrow> name \<Rightarrow> name \<Rightarrow> sumList_mix"          ("_[_::=\<onesuperior>\<twosuperior>_]" [100, 100, 100] 100) and
       
   170   subs_mix      :: "piMix \<Rightarrow> name \<Rightarrow> name \<Rightarrow> piMix"                      ("_[_::=\<onesuperior>_]" [100, 100, 100] 100)
       
   171 where
       
   172   "(a!<b>\<onesuperior>.P)[x::=\<onesuperior>\<onesuperior>y] = (a[x:::=y])!<(b[x:::=y])>\<onesuperior>.(P[x::=\<onesuperior>y])"
       
   173 | "\<lbrakk>atom b \<sharp> (x, y)\<rbrakk> \<Longrightarrow> (a?<b>\<onesuperior>.P)[x::=\<onesuperior>\<onesuperior>y] = (a[x:::=y])?<b>\<onesuperior>.(P[x::=\<onesuperior>y])"
       
   174 | "(<\<tau>\<onesuperior>>.P)[x::=\<onesuperior>\<onesuperior>y] = <\<tau>\<onesuperior>>.(P[x::=\<onesuperior>y])"
       
   175 | "(\<zero>\<onesuperior>)[x::=\<onesuperior>\<twosuperior>y] = \<zero>\<onesuperior>"
       
   176 | "(g \<oplus>\<onesuperior> xg)[x::=\<onesuperior>\<twosuperior>y] = (g[x::=\<onesuperior>\<onesuperior>y]) \<oplus>\<onesuperior> (xg[x::=\<onesuperior>\<twosuperior>y])"
       
   177 | "\<lbrakk>atom a \<sharp> (x, y)\<rbrakk> \<Longrightarrow> (<\<nu>a>\<onesuperior>P)[x::=\<onesuperior>y] = <\<nu>a>\<onesuperior>(P[x::=\<onesuperior>y])"
       
   178 | "(P \<parallel>\<onesuperior> Q)[x::=\<onesuperior>y] = (P[x::=\<onesuperior>y]) \<parallel>\<onesuperior> (Q[x::=\<onesuperior>y])"
       
   179 | "([a\<frown>\<onesuperior>b]P)[x::=\<onesuperior>y] = ([(a[x:::=y])\<frown>\<onesuperior>(b[x:::=y])](P[x::=\<onesuperior>y]))"
       
   180 | "(\<oplus>\<onesuperior>{xg})[x::=\<onesuperior>y] = \<oplus>\<onesuperior>{(xg[x::=\<onesuperior>\<twosuperior>y])}"
       
   181 | "\<lbrakk>atom b \<sharp> (x, y)\<rbrakk> \<Longrightarrow> (\<infinity>a?<b>\<onesuperior>.P)[x::=\<onesuperior>y] = \<infinity>(a[x:::=y])?<b>\<onesuperior>.(P[x::=\<onesuperior>y])"
       
   182 | "(succ\<onesuperior>)[x::=\<onesuperior>y] = succ\<onesuperior>"
       
   183   apply(auto simp add: piMix_distinct piMix_eq_iff)
       
   184   apply(subgoal_tac "\<And>p x r. subsGuard_mix_subsList_mix_subs_mix_graph x r \<Longrightarrow> subsGuard_mix_subsList_mix_subs_mix_graph (p \<bullet> x) (p \<bullet> r)")
       
   185   unfolding eqvt_def
       
   186   apply(rule allI)
       
   187   apply(simp add: permute_fun_def)
       
   188   apply(rule ext)
       
   189   apply(rule ext)
       
   190   apply(simp add: permute_bool_def)
       
   191   apply(rule iffI)
       
   192   apply(drule_tac x="p" in meta_spec)
       
   193   apply(drule_tac x="- p \<bullet> x" in meta_spec)
       
   194   apply(drule_tac x="- p \<bullet> xa" in meta_spec)
       
   195   apply(simp)
       
   196   apply(drule_tac x="-p" in meta_spec)
       
   197   apply(drule_tac x="x" in meta_spec)
       
   198   apply(drule_tac x="xa" in meta_spec)
       
   199   apply(simp)
       
   200   --"Equivariance"
       
   201   apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.induct)
       
   202   apply(simp (no_asm_use) only: eqvts)
       
   203   apply(subst testrr)
       
   204   apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases)
       
   205   apply(blast)+
       
   206   apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros)
       
   207   apply(simp)
       
   208   apply(simp (no_asm_use) only: eqvts)
       
   209   apply(subst testrr)
       
   210   apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases)
       
   211   apply(blast)+
       
   212   apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros)
       
   213   apply(simp only: atom_eqvt[symmetric] Pair_eqvt[symmetric] fresh_eqvt[symmetric] permute_bool_def)
       
   214   apply(simp)
       
   215   apply(simp (no_asm_use) only: eqvts)
       
   216   apply(subst testrr)
       
   217   apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases)
       
   218   apply(blast)+
       
   219   apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros)
       
   220   apply(simp)
       
   221   apply(simp (no_asm_use) only: eqvts)
       
   222   apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros)
       
   223   apply(simp (no_asm_use) only: eqvts)  
       
   224   apply(subst testl)
       
   225   apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases)
       
   226   apply(blast)+
       
   227   apply(subst testlr)
       
   228   apply(rotate_tac 2)
       
   229   apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases)
       
   230   apply(blast)+
       
   231   apply(perm_simp)
       
   232   apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros)
       
   233   apply(blast)
       
   234   apply(blast)
       
   235   apply(simp (no_asm_use) only: eqvts)
       
   236   apply(subst testrr)
       
   237   apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases)
       
   238   apply(blast)+
       
   239   apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros)
       
   240   apply(simp only: atom_eqvt[symmetric] Pair_eqvt[symmetric] fresh_eqvt[symmetric] permute_bool_def)
       
   241   apply(simp)
       
   242   apply(simp (no_asm_use) only: eqvts)
       
   243   apply(subst testrr)
       
   244   apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases)
       
   245   apply(blast)+
       
   246   apply(subst testrr)
       
   247   apply(rotate_tac 2)
       
   248   apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases)
       
   249   apply(blast)+
       
   250   apply(perm_simp)
       
   251   apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros)
       
   252   apply(blast)
       
   253   apply(blast)
       
   254   apply(simp (no_asm_use) only: eqvts)
       
   255   apply(subst testrr)
       
   256   apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases)
       
   257   apply(blast)+
       
   258   apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros)
       
   259   apply(blast)
       
   260   apply(simp (no_asm_use) only: eqvts)
       
   261   apply(subst testlr)
       
   262   apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases)
       
   263   apply(blast)+
       
   264   apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros)
       
   265   apply(blast)
       
   266   apply(simp (no_asm_use) only: eqvts)
       
   267   apply(subst testrr)
       
   268   apply(erule subsGuard_mix_subsList_mix_subs_mix_graph.cases)
       
   269   apply(blast)+
       
   270   apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros)
       
   271   apply(simp only: atom_eqvt[symmetric] Pair_eqvt[symmetric] fresh_eqvt[symmetric] permute_bool_def)
       
   272   apply(blast)
       
   273   apply(perm_simp)
       
   274   apply(rule subsGuard_mix_subsList_mix_subs_mix_graph.intros)
       
   275   --"Covered all cases"
       
   276   apply(case_tac x)
       
   277   apply(simp)
       
   278   apply(case_tac a)
       
   279   apply(simp)
       
   280   apply (rule_tac y="aa" and c="(b, c)" in guardedTerm_mix_sumList_mix_piMix.strong_exhaust(1))
       
   281   apply(blast)
       
   282   apply(auto simp add: fresh_star_def)[1]
       
   283   apply(blast)
       
   284   apply(simp)
       
   285   apply(blast)
       
   286   apply(simp)
       
   287   apply(case_tac b)
       
   288   apply(simp)
       
   289   apply(case_tac a)
       
   290   apply(simp)
       
   291   apply (rule_tac ya="aa" in guardedTerm_mix_sumList_mix_piMix.strong_exhaust(2))
       
   292   apply(blast)
       
   293   apply(blast)
       
   294   apply(simp)
       
   295   apply(case_tac ba)
       
   296   apply(simp)
       
   297   apply (rule_tac yb="a" and c="(bb,c)" in guardedTerm_mix_sumList_mix_piMix.strong_exhaust(3))
       
   298   apply(auto simp add: fresh_star_def)[1]
       
   299   apply(blast)
       
   300   apply(blast)
       
   301   apply(blast)
       
   302   apply(auto simp add: fresh_star_def)[1]
       
   303   apply(blast)
       
   304   apply(simp)
       
   305   apply(blast)
       
   306   --"compatibility"
       
   307   apply (simp add: meta_eq_to_obj_eq[OF subs_mix_def, symmetric, unfolded fun_eq_iff])
       
   308   apply (subgoal_tac "eqvt_at (\<lambda>(a, b, c). subs_mix a b c) (P, xa, ya)")
       
   309   apply (thin_tac "eqvt_at subsGuard_mix_subsList_mix_subs_mix_sumC (Inr (Inr (P, xa, ya)))")
       
   310   apply (thin_tac "eqvt_at subsGuard_mix_subsList_mix_subs_mix_sumC (Inr (Inr (Pa, xa, ya)))")
       
   311   prefer 2
       
   312   apply (simp add: eqvt_at_def subs_mix_def)
       
   313   apply rule
       
   314   apply (subst testrr)
       
   315   apply (simp add: subsGuard_mix_subsList_mix_subs_mix_sumC_def)
       
   316   apply (simp add: THE_default_def)
       
   317 apply (case_tac "Ex1 (subsGuard_mix_subsList_mix_subs_mix_graph (Inr (Inr (P, xa, ya))))")
       
   318 apply simp_all[2]
       
   319 apply auto[1]
       
   320 apply (erule_tac x="x" in allE)
       
   321 apply simp
       
   322 apply (thin_tac "\<forall>p\<Colon>perm.
       
   323            p \<bullet> The (subsGuard_mix_subsList_mix_subs_mix_graph (Inr (Inr (P, xa, ya)))) =
       
   324            (if \<exists>!x\<Colon>guardedTerm_mix + sumList_mix + piMix.
       
   325                   subsGuard_mix_subsList_mix_subs_mix_graph (Inr (Inr (p \<bullet> P, p \<bullet> xa, p \<bullet> ya))) x
       
   326             then THE x\<Colon>guardedTerm_mix + sumList_mix + piMix.
       
   327                     subsGuard_mix_subsList_mix_subs_mix_graph (Inr (Inr (p \<bullet> P, p \<bullet> xa, p \<bullet> ya))) x
       
   328             else Inr (Inr undefined))")
       
   329 apply (thin_tac "\<forall>p\<Colon>perm.
       
   330            p \<bullet> (if \<exists>!x\<Colon>guardedTerm_mix + sumList_mix + piMix.
       
   331                       subsGuard_mix_subsList_mix_subs_mix_graph (Inr (Inr (Pa, xa, ya))) x
       
   332                 then THE x\<Colon>guardedTerm_mix + sumList_mix + piMix.
       
   333                         subsGuard_mix_subsList_mix_subs_mix_graph (Inr (Inr (Pa, xa, ya))) x
       
   334                 else Inr (Inr undefined)) =
       
   335            (if \<exists>!x\<Colon>guardedTerm_mix + sumList_mix + piMix.
       
   336                   subsGuard_mix_subsList_mix_subs_mix_graph (Inr (Inr (p \<bullet> Pa, p \<bullet> xa, p \<bullet> ya))) x
       
   337             then THE x\<Colon>guardedTerm_mix + sumList_mix + piMix.
       
   338                     subsGuard_mix_subsList_mix_subs_mix_graph (Inr (Inr (p \<bullet> Pa, p \<bullet> xa, p \<bullet> ya))) x
       
   339             else Inr (Inr undefined))")
       
   340 apply (thin_tac "atom b \<sharp> (xa, ya)")
       
   341 apply (thin_tac "atom ba \<sharp> (xa, ya)")
       
   342 apply (thin_tac "[[atom b]]lst. P = [[atom ba]]lst. Pa")
       
   343 apply(cases rule: subsGuard_mix_subsList_mix_subs_mix_graph.cases)
       
   344 apply assumption
       
   345 apply (metis Inr_not_Inl)
       
   346 apply (metis Inr_not_Inl)
       
   347 apply (metis Inr_not_Inl)
       
   348 apply (metis Inr_inject Inr_not_Inl)
       
   349 apply (metis Inr_inject Inr_not_Inl)
       
   350 apply (rule_tac x="<\<nu>a>\<onesuperior>Sum_Type.Projr
       
   351                             (Sum_Type.Projr
       
   352                               (subsGuard_mix_subsList_mix_subs_mix_sum (Inr (Inr (Pb, xb, y)))))" in exI)
       
   353 apply clarify
       
   354 apply (rule the1_equality)
       
   355 apply blast apply assumption
       
   356 apply (rule_tac x="Sum_Type.Projr
       
   357                        (Sum_Type.Projr (subsGuard_mix_subsList_mix_subs_mix_sum (Inr (Inr (Pb, xb, y))))) \<parallel>\<onesuperior>
       
   358                       Sum_Type.Projr
       
   359                        (Sum_Type.Projr (subsGuard_mix_subsList_mix_subs_mix_sum (Inr (Inr (Q, xb, y)))))" in exI)
       
   360 apply clarify
       
   361 apply (rule the1_equality)
       
   362 apply blast apply assumption
       
   363 apply (rule_tac x="[(a[xb:::=y])\<frown>\<onesuperior>(bb[xb:::=y])]Sum_Type.Projr
       
   364                                                     (Sum_Type.Projr
       
   365 (subsGuard_mix_subsList_mix_subs_mix_sum (Inr (Inr (Pb, xb, y)))))" in exI)
       
   366 apply clarify
       
   367 apply (rule the1_equality)
       
   368 apply blast apply assumption
       
   369 apply (rule_tac x="\<oplus>\<onesuperior>{Sum_Type.Projl
       
   370                           (Sum_Type.Projr
       
   371                             (subsGuard_mix_subsList_mix_subs_mix_sum (Inr (Inl (xg, xb, y)))))}" in exI)
       
   372 apply clarify
       
   373 apply (rule the1_equality)
       
   374 apply blast apply assumption
       
   375 apply (rule_tac x="\<infinity>(a[xb:::=y])?<bb>\<onesuperior>.Sum_Type.Projr
       
   376                                            (Sum_Type.Projr
       
   377                                              (subsGuard_mix_subsList_mix_subs_mix_sum
       
   378                                                (Inr (Inr (Pb, xb, y)))))" in exI)
       
   379 apply clarify
       
   380 apply (rule the1_equality)
       
   381 apply blast apply assumption
       
   382 apply (rule_tac x="succ\<onesuperior>" in exI)
       
   383 apply clarify
       
   384 apply (rule the1_equality)
       
   385 apply blast apply assumption
       
   386 apply simp
       
   387 (* Here the only real goal compatibility is left *)
       
   388   apply (erule Abs_lst1_fcb)
       
   389   apply (simp_all add: Abs_fresh_iff fresh_fun_eqvt_app)
       
   390   apply (subgoal_tac "atom ba \<sharp> (\<lambda>(a, x, y). subs_mix a x y) (P, xa, ya)")
       
   391   apply simp
       
   392   apply (erule fresh_eqvt_at)
       
   393   apply (simp_all add: fresh_Pair finite_supp eqvts eqvt_at_def fresh_Pair swap_fresh_fresh)
       
   394   done
       
   395 
       
   396 termination (eqvt)
       
   397   apply(relation "measure (% x. case x of Inl (g, x, y) \<Rightarrow> size g | Inr (Inl (xg, x, y)) \<Rightarrow> size xg | Inr (Inr (P, x, y)) \<Rightarrow> size P)")
       
   398   by(simp_all add: piMix_size)
       
   399 
       
   400 lemma forget_mix:
       
   401   fixes g  :: guardedTerm_mix
       
   402   and   xg :: sumList_mix
       
   403   and   P  :: piMix
       
   404   and   x  :: name
       
   405   and   y  :: name
       
   406 
       
   407   shows "atom x \<sharp> g \<longrightarrow> g[x::=\<onesuperior>\<onesuperior>y] = g"
       
   408   and   "atom x \<sharp> xg \<longrightarrow> xg[x::=\<onesuperior>\<twosuperior>y] = xg"
       
   409   and   "atom x \<sharp> P \<longrightarrow> P[x::=\<onesuperior>y] = P"
       
   410 proof -
       
   411   show  "atom x \<sharp> g \<longrightarrow> g[x::=\<onesuperior>\<onesuperior>y] = g"
       
   412   and   "atom x \<sharp> xg \<longrightarrow> xg[x::=\<onesuperior>\<twosuperior>y] = xg"
       
   413   and   "atom x \<sharp> P \<longrightarrow> P[x::=\<onesuperior>y] = P"
       
   414     using assms
       
   415     apply(nominal_induct g and xg and P avoiding: x y rule: piMix_strong_induct)
       
   416     by(auto simp add: piMix_eq_iff piMix_fresh fresh_at_base)
       
   417 qed
       
   418 
       
   419 lemma fresh_fact_mix:
       
   420   fixes g  :: guardedTerm_mix
       
   421   and   xg :: sumList_mix
       
   422   and   P  :: piMix
       
   423   and   x  :: name
       
   424   and   y  :: name
       
   425   and   z  :: name
       
   426 
       
   427   assumes "atom z \<sharp> y"
       
   428 
       
   429   shows "(z = x \<or> atom z \<sharp> g) \<longrightarrow> atom z \<sharp> g[x::=\<onesuperior>\<onesuperior>y]"
       
   430   and   "(z = x \<or> atom z \<sharp> xg) \<longrightarrow> atom z \<sharp> xg[x::=\<onesuperior>\<twosuperior>y]"
       
   431   and   "(z = x \<or> atom z \<sharp> P) \<longrightarrow> atom z \<sharp> P[x::=\<onesuperior>y]"
       
   432 proof -
       
   433   show  "(z = x \<or> atom z \<sharp> g) \<longrightarrow> atom z \<sharp> g[x::=\<onesuperior>\<onesuperior>y]"
       
   434   and   "(z = x \<or> atom z \<sharp> xg) \<longrightarrow> atom z \<sharp> xg[x::=\<onesuperior>\<twosuperior>y]"
       
   435   and   "(z = x \<or> atom z \<sharp> P) \<longrightarrow> atom z \<sharp> P[x::=\<onesuperior>y]"
       
   436     using assms
       
   437     apply(nominal_induct g and xg and P avoiding: x y z rule: piMix_strong_induct)
       
   438     by(auto simp add: piMix_fresh fresh_at_base)
       
   439 qed
       
   440 
       
   441 lemma substitution_lemma_mix:
       
   442   fixes g  :: guardedTerm_mix
       
   443   and   xg :: sumList_mix
       
   444   and   P  :: piMix
       
   445   and   s  :: name
       
   446   and   u  :: name
       
   447   and   x  :: name
       
   448   and   y  :: name
       
   449 
       
   450   assumes "x \<noteq> y"
       
   451   and     "atom x \<sharp> u"
       
   452 
       
   453   shows "g[x::=\<onesuperior>\<onesuperior>s][y::=\<onesuperior>\<onesuperior>u] = g[y::=\<onesuperior>\<onesuperior>u][x::=\<onesuperior>\<onesuperior>s[y:::=u]]"
       
   454   and   "xg[x::=\<onesuperior>\<twosuperior>s][y::=\<onesuperior>\<twosuperior>u] = xg[y::=\<onesuperior>\<twosuperior>u][x::=\<onesuperior>\<twosuperior>s[y:::=u]]"
       
   455   and   "P[x::=\<onesuperior>s][y::=\<onesuperior>u] = P[y::=\<onesuperior>u][x::=\<onesuperior>s[y:::=u]]"
       
   456 proof -
       
   457   show  "g[x::=\<onesuperior>\<onesuperior>s][y::=\<onesuperior>\<onesuperior>u] = g[y::=\<onesuperior>\<onesuperior>u][x::=\<onesuperior>\<onesuperior>s[y:::=u]]"
       
   458   and   "xg[x::=\<onesuperior>\<twosuperior>s][y::=\<onesuperior>\<twosuperior>u] = xg[y::=\<onesuperior>\<twosuperior>u][x::=\<onesuperior>\<twosuperior>s[y:::=u]]"
       
   459   and   "P[x::=\<onesuperior>s][y::=\<onesuperior>u] = P[y::=\<onesuperior>u][x::=\<onesuperior>s[y:::=u]]"
       
   460     using assms
       
   461     apply(nominal_induct g and xg and P avoiding: x y s u rule: piMix_strong_induct)
       
   462     apply(simp_all add: fresh_fact_mix forget_mix)
       
   463     by(auto simp add: fresh_at_base)
       
   464 qed
       
   465 
       
   466 lemma perm_eq_subst_mix:
       
   467   fixes g  :: guardedTerm_mix
       
   468   and   xg :: sumList_mix
       
   469   and   P  :: piMix
       
   470   and   x  :: name
       
   471   and   y  :: name
       
   472 
       
   473   shows "atom y \<sharp> g \<longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> g = g[x::=\<onesuperior>\<onesuperior>y]"
       
   474   and   "atom y \<sharp> xg \<longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> xg = xg[x::=\<onesuperior>\<twosuperior>y]"
       
   475   and   "atom y \<sharp> P \<longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> P = P[x::=\<onesuperior>y]"
       
   476 proof -
       
   477   show  "atom y \<sharp> g \<longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> g = g[x::=\<onesuperior>\<onesuperior>y]"
       
   478   and   "atom y \<sharp> xg \<longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> xg = xg[x::=\<onesuperior>\<twosuperior>y]"
       
   479   and   "atom y \<sharp> P \<longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> P = P[x::=\<onesuperior>y]"
       
   480     apply(nominal_induct g and xg and P avoiding: x y rule: piMix_strong_induct)
       
   481     by(auto simp add: piMix_fresh fresh_at_base)
       
   482 qed
       
   483 
       
   484 lemma subst_id_mix:
       
   485   fixes g  :: guardedTerm_mix
       
   486   and   xg :: sumList_mix
       
   487   and   P  :: piMix
       
   488   and   x  :: name
       
   489 
       
   490   shows "g[x::=\<onesuperior>\<onesuperior>x] = g" and "xg[x::=\<onesuperior>\<twosuperior>x] = xg" and "P[x::=\<onesuperior>x] = P"
       
   491 proof -
       
   492   show  "g[x::=\<onesuperior>\<onesuperior>x] = g" and "xg[x::=\<onesuperior>\<twosuperior>x] = xg" and "P[x::=\<onesuperior>x] = P"
       
   493     apply(nominal_induct g and xg and P avoiding: x rule: piMix_strong_induct)
       
   494     by(auto)
       
   495 qed
       
   496 
       
   497 lemma alphaRes_subst_mix:
       
   498   fixes a :: name
       
   499   and   P :: piMix
       
   500   and   z :: name
       
   501 
       
   502   assumes "atom z \<sharp> P"
       
   503 
       
   504   shows "<\<nu>a>\<onesuperior>P = <\<nu>z>\<onesuperior>(P[a::=\<onesuperior>z])"
       
   505 proof(cases "a = z")
       
   506   assume "a = z"
       
   507   thus ?thesis
       
   508     by(simp add: subst_id_mix)
       
   509 next
       
   510   assume "a \<noteq> z"
       
   511   thus ?thesis
       
   512     using assms
       
   513     by(simp add: alphaRes_mix perm_eq_subst_mix)
       
   514 qed
       
   515 
       
   516 lemma alphaInput_subst_mix:
       
   517   fixes a :: name
       
   518   and   b :: name
       
   519   and   P :: piMix
       
   520   and   z :: name
       
   521 
       
   522   assumes "atom z \<sharp> P"
       
   523 
       
   524   shows "a?<b>\<onesuperior>.P = a?<z>\<onesuperior>.(P[b::=\<onesuperior>z])"
       
   525 proof(cases "b = z")
       
   526   assume "b = z"
       
   527   thus ?thesis
       
   528     by(simp add: subst_id_mix)
       
   529 next
       
   530   assume "b \<noteq> z"
       
   531   thus ?thesis
       
   532     using assms
       
   533     by(simp add: alphaInput_mix perm_eq_subst_mix)
       
   534 qed
       
   535 
       
   536 lemma alphaRep_subst_mix:
       
   537   fixes a :: name
       
   538   and   b :: name
       
   539   and   P :: piMix
       
   540   and   z :: name
       
   541 
       
   542   assumes "atom z \<sharp> P"
       
   543 
       
   544   shows "\<infinity>a?<b>\<onesuperior>.P = \<infinity>a?<z>\<onesuperior>.(P[b::=\<onesuperior>z])"
       
   545 proof(cases "b = z")
       
   546   assume "b = z"
       
   547   thus ?thesis
       
   548     by(simp add: subst_id_mix)
       
   549 next
       
   550   assume "b \<noteq> z"
       
   551   thus ?thesis
       
   552     using assms
       
   553     by(simp add: alphaRep_mix perm_eq_subst_mix)
       
   554 qed
       
   555 
       
   556 inductive
       
   557   fresh_list_guard_mix :: "name list \<Rightarrow> guardedTerm_mix \<Rightarrow> bool"
       
   558 where
       
   559   "fresh_list_guard_mix [] g"
       
   560 | "\<lbrakk>atom n \<sharp> g; fresh_list_guard_mix xn g\<rbrakk> \<Longrightarrow> fresh_list_guard_mix (n#xn) g"
       
   561 
       
   562 equivariance fresh_list_guard_mix
       
   563 nominal_inductive fresh_list_guard_mix
       
   564   done
       
   565 
       
   566 inductive
       
   567   fresh_list_sumList_mix :: "name list \<Rightarrow> sumList_mix \<Rightarrow> bool"
       
   568 where
       
   569   "fresh_list_sumList_mix [] xg"
       
   570 | "\<lbrakk>atom n \<sharp> xg; fresh_list_sumList_mix xn xg\<rbrakk> \<Longrightarrow> fresh_list_sumList_mix (n#xn) xg"
       
   571 
       
   572 equivariance fresh_list_sumList_mix
       
   573 nominal_inductive fresh_list_sumList_mix
       
   574   done
       
   575 
       
   576 inductive
       
   577   fresh_list_mix :: "name list \<Rightarrow> piMix \<Rightarrow> bool"
       
   578 where
       
   579   "fresh_list_mix [] P"
       
   580 | "\<lbrakk>atom n \<sharp> P; fresh_list_mix xn P\<rbrakk> \<Longrightarrow> fresh_list_mix (n#xn) P"
       
   581 
       
   582 equivariance fresh_list_mix
       
   583 nominal_inductive fresh_list_mix
       
   584   done
       
   585 
       
   586 end