44 thm trm.eq_iff |
44 thm trm.eq_iff |
45 thm trm.fv_bn_eqvt |
45 thm trm.fv_bn_eqvt |
46 thm trm.size_eqvt |
46 thm trm.size_eqvt |
47 thm trm.supp |
47 thm trm.supp |
48 thm trm.supp[simplified] |
48 thm trm.supp[simplified] |
49 |
|
50 lemma Abs_set_fcb2: |
|
51 fixes as bs :: "atom set" |
|
52 and x y :: "'b :: fs" |
|
53 and c::"'c::fs" |
|
54 assumes eq: "[as]set. x = [bs]set. y" |
|
55 and fin: "finite as" "finite bs" |
|
56 and fcb1: "as \<sharp>* f as x c" |
|
57 and fresh1: "as \<sharp>* c" |
|
58 and fresh2: "bs \<sharp>* c" |
|
59 and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c" |
|
60 and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c" |
|
61 shows "f as x c = f bs y c" |
|
62 proof - |
|
63 have "supp (as, x, c) supports (f as x c)" |
|
64 unfolding supports_def fresh_def[symmetric] |
|
65 by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh) |
|
66 then have fin1: "finite (supp (f as x c))" |
|
67 using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair) |
|
68 have "supp (bs, y, c) supports (f bs y c)" |
|
69 unfolding supports_def fresh_def[symmetric] |
|
70 by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh) |
|
71 then have fin2: "finite (supp (f bs y c))" |
|
72 using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair) |
|
73 obtain q::"perm" where |
|
74 fr1: "(q \<bullet> as) \<sharp>* (x, c, f as x c, f bs y c)" and |
|
75 fr2: "supp q \<sharp>* ([as]set. x)" and |
|
76 inc: "supp q \<subseteq> as \<union> (q \<bullet> as)" |
|
77 using at_set_avoiding3[where xs="as" and c="(x, c, f as x c, f bs y c)" and x="[as]set. x"] |
|
78 fin1 fin2 fin |
|
79 by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv) |
|
80 have "[q \<bullet> as]set. (q \<bullet> x) = q \<bullet> ([as]set. x)" by simp |
|
81 also have "\<dots> = [as]set. x" |
|
82 by (simp only: fr2 perm_supp_eq) |
|
83 finally have "[q \<bullet> as]set. (q \<bullet> x) = [bs]set. y" using eq by simp |
|
84 then obtain r::perm where |
|
85 qq1: "q \<bullet> x = r \<bullet> y" and |
|
86 qq2: "q \<bullet> as = r \<bullet> bs" and |
|
87 qq3: "supp r \<subseteq> (q \<bullet> as) \<union> bs" |
|
88 apply(drule_tac sym) |
|
89 apply(simp only: Abs_eq_iff2 alphas) |
|
90 apply(erule exE) |
|
91 apply(erule conjE)+ |
|
92 apply(drule_tac x="p" in meta_spec) |
|
93 apply(simp add: set_eqvt) |
|
94 apply(blast) |
|
95 done |
|
96 have "as \<sharp>* f as x c" by (rule fcb1) |
|
97 then have "q \<bullet> (as \<sharp>* f as x c)" |
|
98 by (simp add: permute_bool_def) |
|
99 then have "(q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c" |
|
100 apply(simp add: fresh_star_eqvt set_eqvt) |
|
101 apply(subst (asm) perm1) |
|
102 using inc fresh1 fr1 |
|
103 apply(auto simp add: fresh_star_def fresh_Pair) |
|
104 done |
|
105 then have "(r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp |
|
106 then have "r \<bullet> (bs \<sharp>* f bs y c)" |
|
107 apply(simp add: fresh_star_eqvt set_eqvt) |
|
108 apply(subst (asm) perm2[symmetric]) |
|
109 using qq3 fresh2 fr1 |
|
110 apply(auto simp add: set_eqvt fresh_star_def fresh_Pair) |
|
111 done |
|
112 then have fcb2: "bs \<sharp>* f bs y c" by (simp add: permute_bool_def) |
|
113 have "f as x c = q \<bullet> (f as x c)" |
|
114 apply(rule perm_supp_eq[symmetric]) |
|
115 using inc fcb1 fr1 by (auto simp add: fresh_star_def) |
|
116 also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c" |
|
117 apply(rule perm1) |
|
118 using inc fresh1 fr1 by (auto simp add: fresh_star_def) |
|
119 also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp |
|
120 also have "\<dots> = r \<bullet> (f bs y c)" |
|
121 apply(rule perm2[symmetric]) |
|
122 using qq3 fresh2 fr1 by (auto simp add: fresh_star_def) |
|
123 also have "... = f bs y c" |
|
124 apply(rule perm_supp_eq) |
|
125 using qq3 fr1 fcb2 by (auto simp add: fresh_star_def) |
|
126 finally show ?thesis by simp |
|
127 qed |
|
128 |
|
129 lemma Abs_res_fcb2: |
|
130 fixes as bs :: "atom set" |
|
131 and x y :: "'b :: fs" |
|
132 and c::"'c::fs" |
|
133 assumes eq: "[as]res. x = [bs]res. y" |
|
134 and fin: "finite as" "finite bs" |
|
135 and fcb1: "as \<sharp>* f as x c" |
|
136 and fresh1: "as \<sharp>* c" |
|
137 and fresh2: "bs \<sharp>* c" |
|
138 and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c" |
|
139 and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c" |
|
140 shows "f as x c = f bs y c" |
|
141 proof - |
|
142 have "supp (as, x, c) supports (f as x c)" |
|
143 unfolding supports_def fresh_def[symmetric] |
|
144 by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh) |
|
145 then have fin1: "finite (supp (f as x c))" |
|
146 using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair) |
|
147 have "supp (bs, y, c) supports (f bs y c)" |
|
148 unfolding supports_def fresh_def[symmetric] |
|
149 by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh) |
|
150 then have fin2: "finite (supp (f bs y c))" |
|
151 using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair) |
|
152 obtain q::"perm" where |
|
153 fr1: "(q \<bullet> as) \<sharp>* (x, c, f as x c, f bs y c)" and |
|
154 fr2: "supp q \<sharp>* ([as]res. x)" and |
|
155 inc: "supp q \<subseteq> as \<union> (q \<bullet> as)" |
|
156 using at_set_avoiding3[where xs="as" and c="(x, c, f as x c, f bs y c)" and x="[as]res. x"] |
|
157 fin1 fin2 fin |
|
158 by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv) |
|
159 have "[q \<bullet> as]res. (q \<bullet> x) = q \<bullet> ([as]res. x)" by simp |
|
160 also have "\<dots> = [as]res. x" |
|
161 by (simp only: fr2 perm_supp_eq) |
|
162 finally have "[q \<bullet> as]res. (q \<bullet> x) = [bs]res. y" using eq by simp |
|
163 then obtain r::perm where |
|
164 qq1: "q \<bullet> x = r \<bullet> y" and |
|
165 qq2: "(q \<bullet> as \<inter> supp (q \<bullet> x)) = r \<bullet> (bs \<inter> supp y)" and |
|
166 qq3: "supp r \<subseteq> bs \<inter> supp y \<union> q \<bullet> as \<inter> supp (q \<bullet> x)" |
|
167 apply(drule_tac sym) |
|
168 apply(subst(asm) Abs_eq_res_set) |
|
169 apply(simp only: Abs_eq_iff2 alphas) |
|
170 apply(erule exE) |
|
171 apply(erule conjE)+ |
|
172 apply(drule_tac x="p" in meta_spec) |
|
173 apply(simp add: set_eqvt) |
|
174 done |
|
175 have "(as \<inter> supp x) \<sharp>* f (as \<inter> supp x) x c" sorry (* FCB? *) |
|
176 then have "q \<bullet> ((as \<inter> supp x) \<sharp>* f (as \<inter> supp x) x c)" |
|
177 by (simp add: permute_bool_def) |
|
178 then have "(q \<bullet> (as \<inter> supp x)) \<sharp>* f (q \<bullet> (as \<inter> supp x)) (q \<bullet> x) c" |
|
179 apply(simp add: fresh_star_eqvt set_eqvt) |
|
180 sorry (* perm? *) |
|
181 then have "r \<bullet> (bs \<inter> supp y) \<sharp>* f (r \<bullet> (bs \<inter> supp y)) (r \<bullet> y) c" using qq2 |
|
182 apply (simp add: inter_eqvt) |
|
183 sorry |
|
184 (* rest similar reversing it other way around... *) |
|
185 show ?thesis sorry |
|
186 qed |
|
187 |
|
188 |
|
189 |
|
190 lemma Abs_lst_fcb2: |
|
191 fixes as bs :: "atom list" |
|
192 and x y :: "'b :: fs" |
|
193 and c::"'c::fs" |
|
194 assumes eq: "[as]lst. x = [bs]lst. y" |
|
195 and fcb1: "(set as) \<sharp>* f as x c" |
|
196 and fresh1: "set as \<sharp>* c" |
|
197 and fresh2: "set bs \<sharp>* c" |
|
198 and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c" |
|
199 and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c" |
|
200 shows "f as x c = f bs y c" |
|
201 proof - |
|
202 have "supp (as, x, c) supports (f as x c)" |
|
203 unfolding supports_def fresh_def[symmetric] |
|
204 by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh) |
|
205 then have fin1: "finite (supp (f as x c))" |
|
206 by (auto intro: supports_finite simp add: finite_supp) |
|
207 have "supp (bs, y, c) supports (f bs y c)" |
|
208 unfolding supports_def fresh_def[symmetric] |
|
209 by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh) |
|
210 then have fin2: "finite (supp (f bs y c))" |
|
211 by (auto intro: supports_finite simp add: finite_supp) |
|
212 obtain q::"perm" where |
|
213 fr1: "(q \<bullet> (set as)) \<sharp>* (x, c, f as x c, f bs y c)" and |
|
214 fr2: "supp q \<sharp>* Abs_lst as x" and |
|
215 inc: "supp q \<subseteq> (set as) \<union> q \<bullet> (set as)" |
|
216 using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"] |
|
217 fin1 fin2 |
|
218 by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv) |
|
219 have "Abs_lst (q \<bullet> as) (q \<bullet> x) = q \<bullet> Abs_lst as x" by simp |
|
220 also have "\<dots> = Abs_lst as x" |
|
221 by (simp only: fr2 perm_supp_eq) |
|
222 finally have "Abs_lst (q \<bullet> as) (q \<bullet> x) = Abs_lst bs y" using eq by simp |
|
223 then obtain r::perm where |
|
224 qq1: "q \<bullet> x = r \<bullet> y" and |
|
225 qq2: "q \<bullet> as = r \<bullet> bs" and |
|
226 qq3: "supp r \<subseteq> (q \<bullet> (set as)) \<union> set bs" |
|
227 apply(drule_tac sym) |
|
228 apply(simp only: Abs_eq_iff2 alphas) |
|
229 apply(erule exE) |
|
230 apply(erule conjE)+ |
|
231 apply(drule_tac x="p" in meta_spec) |
|
232 apply(simp add: set_eqvt) |
|
233 apply(blast) |
|
234 done |
|
235 have "(set as) \<sharp>* f as x c" by (rule fcb1) |
|
236 then have "q \<bullet> ((set as) \<sharp>* f as x c)" |
|
237 by (simp add: permute_bool_def) |
|
238 then have "set (q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c" |
|
239 apply(simp add: fresh_star_eqvt set_eqvt) |
|
240 apply(subst (asm) perm1) |
|
241 using inc fresh1 fr1 |
|
242 apply(auto simp add: fresh_star_def fresh_Pair) |
|
243 done |
|
244 then have "set (r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp |
|
245 then have "r \<bullet> ((set bs) \<sharp>* f bs y c)" |
|
246 apply(simp add: fresh_star_eqvt set_eqvt) |
|
247 apply(subst (asm) perm2[symmetric]) |
|
248 using qq3 fresh2 fr1 |
|
249 apply(auto simp add: set_eqvt fresh_star_def fresh_Pair) |
|
250 done |
|
251 then have fcb2: "(set bs) \<sharp>* f bs y c" by (simp add: permute_bool_def) |
|
252 have "f as x c = q \<bullet> (f as x c)" |
|
253 apply(rule perm_supp_eq[symmetric]) |
|
254 using inc fcb1 fr1 by (auto simp add: fresh_star_def) |
|
255 also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c" |
|
256 apply(rule perm1) |
|
257 using inc fresh1 fr1 by (auto simp add: fresh_star_def) |
|
258 also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp |
|
259 also have "\<dots> = r \<bullet> (f bs y c)" |
|
260 apply(rule perm2[symmetric]) |
|
261 using qq3 fresh2 fr1 by (auto simp add: fresh_star_def) |
|
262 also have "... = f bs y c" |
|
263 apply(rule perm_supp_eq) |
|
264 using qq3 fr1 fcb2 by (auto simp add: fresh_star_def) |
|
265 finally show ?thesis by simp |
|
266 qed |
|
267 |
|
268 lemma Abs_lst1_fcb2: |
|
269 fixes a b :: "atom" |
|
270 and x y :: "'b :: fs" |
|
271 and c::"'c :: fs" |
|
272 assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)" |
|
273 and fcb1: "a \<sharp> f a x c" |
|
274 and fresh: "{a, b} \<sharp>* c" |
|
275 and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a x c) = f (p \<bullet> a) (p \<bullet> x) c" |
|
276 and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b y c) = f (p \<bullet> b) (p \<bullet> y) c" |
|
277 shows "f a x c = f b y c" |
|
278 using e |
|
279 apply(drule_tac Abs_lst_fcb2[where c="c" and f="\<lambda>(as::atom list) . f (hd as)"]) |
|
280 apply(simp_all) |
|
281 using fcb1 fresh perm1 perm2 |
|
282 apply(simp_all add: fresh_star_def) |
|
283 done |
|
284 |
|
285 lemma supp_zero_perm_zero: |
|
286 shows "supp (p :: perm) = {} \<longleftrightarrow> p = 0" |
|
287 by (metis supp_perm_singleton supp_zero_perm) |
|
288 |
|
289 lemma permute_atom_list_id: |
|
290 shows "p \<bullet> l = l \<longleftrightarrow> supp p \<inter> set l = {}" |
|
291 by (induct l) (auto simp add: supp_Nil supp_perm) |
|
292 |
|
293 lemma permute_length_eq: |
|
294 shows "p \<bullet> xs = ys \<Longrightarrow> length xs = length ys" |
|
295 by (auto simp add: length_eqvt[symmetric] permute_pure) |
|
296 |
|
297 lemma Abs_lst_binder_length: |
|
298 shows "[xs]lst. T = [ys]lst. S \<Longrightarrow> length xs = length ys" |
|
299 by (auto simp add: Abs_eq_iff alphas length_eqvt[symmetric] permute_pure) |
|
300 |
|
301 lemma Abs_lst_binder_eq: |
|
302 shows "Abs_lst l T = Abs_lst l S \<longleftrightarrow> T = S" |
|
303 by (rule, simp_all add: Abs_eq_iff2 alphas) |
|
304 (metis fresh_star_zero inf_absorb1 permute_atom_list_id supp_perm_eq |
|
305 supp_zero_perm_zero) |
|
306 |
|
307 lemma in_permute_list: |
|
308 shows "py \<bullet> p \<bullet> xs = px \<bullet> xs \<Longrightarrow> x \<in> set xs \<Longrightarrow> py \<bullet> p \<bullet> x = px \<bullet> x" |
|
309 by (induct xs) auto |
|
310 |
|
311 |
|
312 |
49 |
313 |
50 |
314 nominal_primrec |
51 nominal_primrec |
315 crename :: "trm \<Rightarrow> coname \<Rightarrow> coname \<Rightarrow> trm" ("_[_\<turnstile>c>_]" [100,100,100] 100) |
52 crename :: "trm \<Rightarrow> coname \<Rightarrow> coname \<Rightarrow> trm" ("_[_\<turnstile>c>_]" [100,100,100] 100) |
316 where |
53 where |