author | Cezary Kaliszyk <kaliszyk@in.tum.de> |
Sat, 27 Mar 2010 08:11:11 +0100 | |
changeset 1670 | ed89a26b7074 |
parent 1633 | 9e31248a1b8c |
permissions | -rw-r--r-- |
1062 | 1 |
(* Title: Nominal2_Supp |
2 |
Authors: Brian Huffman, Christian Urban |
|
3 |
||
4 |
Supplementary Lemmas and Definitions for |
|
5 |
Nominal Isabelle. |
|
6 |
*) |
|
7 |
theory Nominal2_Supp |
|
8 |
imports Nominal2_Base Nominal2_Eqvt Nominal2_Atoms |
|
9 |
begin |
|
10 |
||
11 |
||
12 |
section {* Fresh-Star *} |
|
13 |
||
14 |
text {* The fresh-star generalisation of fresh is used in strong |
|
15 |
induction principles. *} |
|
16 |
||
17 |
definition |
|
18 |
fresh_star :: "atom set \<Rightarrow> 'a::pt \<Rightarrow> bool" ("_ \<sharp>* _" [80,80] 80) |
|
19 |
where |
|
1506
7c607df46a0a
slightly more in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1436
diff
changeset
|
20 |
"as \<sharp>* x \<equiv> \<forall>a \<in> as. a \<sharp> x" |
1062 | 21 |
|
22 |
lemma fresh_star_prod: |
|
1506
7c607df46a0a
slightly more in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1436
diff
changeset
|
23 |
fixes as::"atom set" |
7c607df46a0a
slightly more in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1436
diff
changeset
|
24 |
shows "as \<sharp>* (x, y) = (as \<sharp>* x \<and> as \<sharp>* y)" |
1062 | 25 |
by (auto simp add: fresh_star_def fresh_Pair) |
26 |
||
27 |
lemma fresh_star_union: |
|
1506
7c607df46a0a
slightly more in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1436
diff
changeset
|
28 |
shows "(as \<union> bs) \<sharp>* x = (as \<sharp>* x \<and> bs \<sharp>* x)" |
1062 | 29 |
by (auto simp add: fresh_star_def) |
30 |
||
31 |
lemma fresh_star_insert: |
|
1506
7c607df46a0a
slightly more in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1436
diff
changeset
|
32 |
shows "(insert a as) \<sharp>* x = (a \<sharp> x \<and> as \<sharp>* x)" |
1062 | 33 |
by (auto simp add: fresh_star_def) |
34 |
||
35 |
lemma fresh_star_Un_elim: |
|
1506
7c607df46a0a
slightly more in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1436
diff
changeset
|
36 |
"((as \<union> bs) \<sharp>* x \<Longrightarrow> PROP C) \<equiv> (as \<sharp>* x \<Longrightarrow> bs \<sharp>* x \<Longrightarrow> PROP C)" |
1062 | 37 |
unfolding fresh_star_def |
38 |
apply(rule) |
|
39 |
apply(erule meta_mp) |
|
40 |
apply(auto) |
|
41 |
done |
|
42 |
||
43 |
lemma fresh_star_insert_elim: |
|
1506
7c607df46a0a
slightly more in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1436
diff
changeset
|
44 |
"(insert a as \<sharp>* x \<Longrightarrow> PROP C) \<equiv> (a \<sharp> x \<Longrightarrow> as \<sharp>* x \<Longrightarrow> PROP C)" |
1062 | 45 |
unfolding fresh_star_def |
46 |
by rule (simp_all add: fresh_star_def) |
|
47 |
||
48 |
lemma fresh_star_empty_elim: |
|
1506
7c607df46a0a
slightly more in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1436
diff
changeset
|
49 |
"({} \<sharp>* x \<Longrightarrow> PROP C) \<equiv> PROP C" |
1062 | 50 |
by (simp add: fresh_star_def) |
51 |
||
52 |
lemma fresh_star_unit_elim: |
|
53 |
shows "(a \<sharp>* () \<Longrightarrow> PROP C) \<equiv> PROP C" |
|
54 |
by (simp add: fresh_star_def fresh_unit) |
|
55 |
||
56 |
lemma fresh_star_prod_elim: |
|
57 |
shows "(a \<sharp>* (x, y) \<Longrightarrow> PROP C) \<equiv> (a \<sharp>* x \<Longrightarrow> a \<sharp>* y \<Longrightarrow> PROP C)" |
|
58 |
by (rule, simp_all add: fresh_star_prod) |
|
59 |
||
1436
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
60 |
lemma fresh_star_plus: |
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
61 |
fixes p q::perm |
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
62 |
shows "\<lbrakk>a \<sharp>* p; a \<sharp>* q\<rbrakk> \<Longrightarrow> a \<sharp>* (p + q)" |
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
63 |
unfolding fresh_star_def |
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
64 |
by (simp add: fresh_plus_perm) |
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
65 |
|
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
66 |
lemma fresh_star_permute_iff: |
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
67 |
shows "(p \<bullet> a) \<sharp>* (p \<bullet> x) \<longleftrightarrow> a \<sharp>* x" |
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
68 |
unfolding fresh_star_def |
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
69 |
by (metis mem_permute_iff permute_minus_cancel fresh_permute_iff) |
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
70 |
|
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
71 |
lemma fresh_star_eqvt: |
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
72 |
shows "(p \<bullet> (as \<sharp>* x)) = (p \<bullet> as) \<sharp>* (p \<bullet> x)" |
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
73 |
unfolding fresh_star_def |
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
74 |
unfolding Ball_def |
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
75 |
apply(simp add: all_eqvt) |
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
76 |
apply(subst permute_fun_def) |
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
77 |
apply(simp add: imp_eqvt fresh_eqvt mem_eqvt) |
04dad9b0136d
started supp-fv proofs (is going to work)
Christian Urban <urbanc@in.tum.de>
parents:
1258
diff
changeset
|
78 |
done |
1062 | 79 |
|
80 |
section {* Avoiding of atom sets *} |
|
81 |
||
82 |
text {* |
|
83 |
For every set of atoms, there is another set of atoms |
|
84 |
avoiding a finitely supported c and there is a permutation |
|
85 |
which 'translates' between both sets. |
|
86 |
*} |
|
87 |
||
88 |
lemma at_set_avoiding_aux: |
|
89 |
fixes Xs::"atom set" |
|
90 |
and As::"atom set" |
|
91 |
assumes b: "Xs \<subseteq> As" |
|
92 |
and c: "finite As" |
|
93 |
shows "\<exists>p. (p \<bullet> Xs) \<inter> As = {} \<and> (supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))" |
|
94 |
proof - |
|
95 |
from b c have "finite Xs" by (rule finite_subset) |
|
96 |
then show ?thesis using b |
|
97 |
proof (induct rule: finite_subset_induct) |
|
98 |
case empty |
|
99 |
have "0 \<bullet> {} \<inter> As = {}" by simp |
|
100 |
moreover |
|
101 |
have "supp (0::perm) \<subseteq> {} \<union> 0 \<bullet> {}" by (simp add: supp_zero_perm) |
|
102 |
ultimately show ?case by blast |
|
103 |
next |
|
104 |
case (insert x Xs) |
|
105 |
then obtain p where |
|
106 |
p1: "(p \<bullet> Xs) \<inter> As = {}" and |
|
107 |
p2: "supp p \<subseteq> (Xs \<union> (p \<bullet> Xs))" by blast |
|
108 |
from `x \<in> As` p1 have "x \<notin> p \<bullet> Xs" by fast |
|
109 |
with `x \<notin> Xs` p2 have "x \<notin> supp p" by fast |
|
110 |
hence px: "p \<bullet> x = x" unfolding supp_perm by simp |
|
111 |
have "finite (As \<union> p \<bullet> Xs)" |
|
112 |
using `finite As` `finite Xs` |
|
113 |
by (simp add: permute_set_eq_image) |
|
114 |
then obtain y where "y \<notin> (As \<union> p \<bullet> Xs)" "sort_of y = sort_of x" |
|
115 |
by (rule obtain_atom) |
|
116 |
hence y: "y \<notin> As" "y \<notin> p \<bullet> Xs" "sort_of y = sort_of x" |
|
117 |
by simp_all |
|
118 |
let ?q = "(x \<rightleftharpoons> y) + p" |
|
119 |
have q: "?q \<bullet> insert x Xs = insert y (p \<bullet> Xs)" |
|
120 |
unfolding insert_eqvt |
|
121 |
using `p \<bullet> x = x` `sort_of y = sort_of x` |
|
122 |
using `x \<notin> p \<bullet> Xs` `y \<notin> p \<bullet> Xs` |
|
123 |
by (simp add: swap_atom swap_set_not_in) |
|
124 |
have "?q \<bullet> insert x Xs \<inter> As = {}" |
|
125 |
using `y \<notin> As` `p \<bullet> Xs \<inter> As = {}` |
|
126 |
unfolding q by simp |
|
127 |
moreover |
|
128 |
have "supp ?q \<subseteq> insert x Xs \<union> ?q \<bullet> insert x Xs" |
|
129 |
using p2 unfolding q |
|
130 |
apply (intro subset_trans [OF supp_plus_perm]) |
|
131 |
apply (auto simp add: supp_swap) |
|
132 |
done |
|
133 |
ultimately show ?case by blast |
|
134 |
qed |
|
135 |
qed |
|
136 |
||
137 |
lemma at_set_avoiding: |
|
138 |
assumes a: "finite Xs" |
|
139 |
and b: "finite (supp c)" |
|
140 |
obtains p::"perm" where "(p \<bullet> Xs)\<sharp>*c" and "(supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))" |
|
141 |
using a b at_set_avoiding_aux [where Xs="Xs" and As="Xs \<union> supp c"] |
|
142 |
unfolding fresh_star_def fresh_def by blast |
|
143 |
||
144 |
||
145 |
section {* The freshness lemma according to Andrew Pitts *} |
|
146 |
||
147 |
lemma fresh_conv_MOST: |
|
148 |
shows "a \<sharp> x \<longleftrightarrow> (MOST b. (a \<rightleftharpoons> b) \<bullet> x = x)" |
|
149 |
unfolding fresh_def supp_def MOST_iff_cofinite by simp |
|
150 |
||
151 |
lemma fresh_apply: |
|
152 |
assumes "a \<sharp> f" and "a \<sharp> x" |
|
153 |
shows "a \<sharp> f x" |
|
154 |
using assms unfolding fresh_conv_MOST |
|
155 |
unfolding permute_fun_app_eq [where f=f] |
|
156 |
by (elim MOST_rev_mp, simp) |
|
157 |
||
158 |
lemma freshness_lemma: |
|
159 |
fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
160 |
assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
161 |
shows "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
162 |
proof - |
|
163 |
from a obtain b where a1: "atom b \<sharp> h" and a2: "atom b \<sharp> h b" |
|
164 |
by (auto simp add: fresh_Pair) |
|
165 |
show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
166 |
proof (intro exI allI impI) |
|
167 |
fix a :: 'a |
|
168 |
assume a3: "atom a \<sharp> h" |
|
169 |
show "h a = h b" |
|
170 |
proof (cases "a = b") |
|
171 |
assume "a = b" |
|
172 |
thus "h a = h b" by simp |
|
173 |
next |
|
174 |
assume "a \<noteq> b" |
|
1080 | 175 |
hence "atom a \<sharp> b" by (simp add: fresh_at_base) |
1062 | 176 |
with a3 have "atom a \<sharp> h b" by (rule fresh_apply) |
177 |
with a2 have d1: "(atom b \<rightleftharpoons> atom a) \<bullet> (h b) = (h b)" |
|
178 |
by (rule swap_fresh_fresh) |
|
179 |
from a1 a3 have d2: "(atom b \<rightleftharpoons> atom a) \<bullet> h = h" |
|
180 |
by (rule swap_fresh_fresh) |
|
181 |
from d1 have "h b = (atom b \<rightleftharpoons> atom a) \<bullet> (h b)" by simp |
|
182 |
also have "\<dots> = ((atom b \<rightleftharpoons> atom a) \<bullet> h) ((atom b \<rightleftharpoons> atom a) \<bullet> b)" |
|
183 |
by (rule permute_fun_app_eq) |
|
184 |
also have "\<dots> = h a" |
|
185 |
using d2 by simp |
|
186 |
finally show "h a = h b" by simp |
|
187 |
qed |
|
188 |
qed |
|
189 |
qed |
|
190 |
||
191 |
lemma freshness_lemma_unique: |
|
192 |
fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
193 |
assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
194 |
shows "\<exists>!x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
195 |
proof (rule ex_ex1I) |
|
196 |
from a show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
197 |
by (rule freshness_lemma) |
|
198 |
next |
|
199 |
fix x y |
|
200 |
assume x: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
201 |
assume y: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = y" |
|
202 |
from a x y show "x = y" |
|
203 |
by (auto simp add: fresh_Pair) |
|
204 |
qed |
|
205 |
||
206 |
text {* packaging the freshness lemma into a function *} |
|
207 |
||
208 |
definition |
|
209 |
fresh_fun :: "('a::at \<Rightarrow> 'b::pt) \<Rightarrow> 'b" |
|
210 |
where |
|
211 |
"fresh_fun h = (THE x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x)" |
|
212 |
||
213 |
lemma fresh_fun_app: |
|
214 |
fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
215 |
assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
216 |
assumes b: "atom a \<sharp> h" |
|
217 |
shows "fresh_fun h = h a" |
|
218 |
unfolding fresh_fun_def |
|
219 |
proof (rule the_equality) |
|
220 |
show "\<forall>a'. atom a' \<sharp> h \<longrightarrow> h a' = h a" |
|
221 |
proof (intro strip) |
|
222 |
fix a':: 'a |
|
223 |
assume c: "atom a' \<sharp> h" |
|
224 |
from a have "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" by (rule freshness_lemma) |
|
225 |
with b c show "h a' = h a" by auto |
|
226 |
qed |
|
227 |
next |
|
228 |
fix fr :: 'b |
|
229 |
assume "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = fr" |
|
230 |
with b show "fr = h a" by auto |
|
231 |
qed |
|
232 |
||
233 |
lemma fresh_fun_app': |
|
234 |
fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
235 |
assumes a: "atom a \<sharp> h" "atom a \<sharp> h a" |
|
236 |
shows "fresh_fun h = h a" |
|
237 |
apply (rule fresh_fun_app) |
|
238 |
apply (auto simp add: fresh_Pair intro: a) |
|
239 |
done |
|
240 |
||
241 |
lemma fresh_fun_eqvt: |
|
242 |
fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
243 |
assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
244 |
shows "p \<bullet> (fresh_fun h) = fresh_fun (p \<bullet> h)" |
|
245 |
using a |
|
246 |
apply (clarsimp simp add: fresh_Pair) |
|
247 |
apply (subst fresh_fun_app', assumption+) |
|
248 |
apply (drule fresh_permute_iff [where p=p, THEN iffD2]) |
|
249 |
apply (drule fresh_permute_iff [where p=p, THEN iffD2]) |
|
250 |
apply (simp add: atom_eqvt permute_fun_app_eq [where f=h]) |
|
251 |
apply (erule (1) fresh_fun_app' [symmetric]) |
|
252 |
done |
|
253 |
||
254 |
lemma fresh_fun_supports: |
|
255 |
fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
256 |
assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
257 |
shows "(supp h) supports (fresh_fun h)" |
|
258 |
apply (simp add: supports_def fresh_def [symmetric]) |
|
259 |
apply (simp add: fresh_fun_eqvt [OF a] swap_fresh_fresh) |
|
260 |
done |
|
261 |
||
262 |
notation fresh_fun (binder "FRESH " 10) |
|
263 |
||
264 |
lemma FRESH_f_iff: |
|
265 |
fixes P :: "'a::at \<Rightarrow> 'b::pure" |
|
266 |
fixes f :: "'b \<Rightarrow> 'c::pure" |
|
267 |
assumes P: "finite (supp P)" |
|
268 |
shows "(FRESH x. f (P x)) = f (FRESH x. P x)" |
|
269 |
proof - |
|
270 |
obtain a::'a where "atom a \<notin> supp P" |
|
271 |
using P by (rule obtain_at_base) |
|
272 |
hence "atom a \<sharp> P" |
|
273 |
by (simp add: fresh_def) |
|
274 |
show "(FRESH x. f (P x)) = f (FRESH x. P x)" |
|
275 |
apply (subst fresh_fun_app' [where a=a, OF _ pure_fresh]) |
|
276 |
apply (cut_tac `atom a \<sharp> P`) |
|
277 |
apply (simp add: fresh_conv_MOST) |
|
278 |
apply (elim MOST_rev_mp, rule MOST_I, clarify) |
|
279 |
apply (simp add: permute_fun_def permute_pure expand_fun_eq) |
|
280 |
apply (subst fresh_fun_app' [where a=a, OF `atom a \<sharp> P` pure_fresh]) |
|
281 |
apply (rule refl) |
|
282 |
done |
|
283 |
qed |
|
284 |
||
285 |
lemma FRESH_binop_iff: |
|
286 |
fixes P :: "'a::at \<Rightarrow> 'b::pure" |
|
287 |
fixes Q :: "'a::at \<Rightarrow> 'c::pure" |
|
288 |
fixes binop :: "'b \<Rightarrow> 'c \<Rightarrow> 'd::pure" |
|
289 |
assumes P: "finite (supp P)" |
|
290 |
and Q: "finite (supp Q)" |
|
291 |
shows "(FRESH x. binop (P x) (Q x)) = binop (FRESH x. P x) (FRESH x. Q x)" |
|
292 |
proof - |
|
293 |
from assms have "finite (supp P \<union> supp Q)" by simp |
|
294 |
then obtain a::'a where "atom a \<notin> (supp P \<union> supp Q)" |
|
295 |
by (rule obtain_at_base) |
|
296 |
hence "atom a \<sharp> P" and "atom a \<sharp> Q" |
|
297 |
by (simp_all add: fresh_def) |
|
298 |
show ?thesis |
|
299 |
apply (subst fresh_fun_app' [where a=a, OF _ pure_fresh]) |
|
300 |
apply (cut_tac `atom a \<sharp> P` `atom a \<sharp> Q`) |
|
301 |
apply (simp add: fresh_conv_MOST) |
|
302 |
apply (elim MOST_rev_mp, rule MOST_I, clarify) |
|
303 |
apply (simp add: permute_fun_def permute_pure expand_fun_eq) |
|
304 |
apply (subst fresh_fun_app' [where a=a, OF `atom a \<sharp> P` pure_fresh]) |
|
305 |
apply (subst fresh_fun_app' [where a=a, OF `atom a \<sharp> Q` pure_fresh]) |
|
306 |
apply (rule refl) |
|
307 |
done |
|
308 |
qed |
|
309 |
||
310 |
lemma FRESH_conj_iff: |
|
311 |
fixes P Q :: "'a::at \<Rightarrow> bool" |
|
312 |
assumes P: "finite (supp P)" and Q: "finite (supp Q)" |
|
313 |
shows "(FRESH x. P x \<and> Q x) \<longleftrightarrow> (FRESH x. P x) \<and> (FRESH x. Q x)" |
|
314 |
using P Q by (rule FRESH_binop_iff) |
|
315 |
||
316 |
lemma FRESH_disj_iff: |
|
317 |
fixes P Q :: "'a::at \<Rightarrow> bool" |
|
318 |
assumes P: "finite (supp P)" and Q: "finite (supp Q)" |
|
319 |
shows "(FRESH x. P x \<or> Q x) \<longleftrightarrow> (FRESH x. P x) \<or> (FRESH x. Q x)" |
|
320 |
using P Q by (rule FRESH_binop_iff) |
|
321 |
||
322 |
||
323 |
section {* An example of a function without finite support *} |
|
324 |
||
325 |
primrec |
|
326 |
nat_of :: "atom \<Rightarrow> nat" |
|
327 |
where |
|
328 |
"nat_of (Atom s n) = n" |
|
329 |
||
330 |
lemma atom_eq_iff: |
|
331 |
fixes a b :: atom |
|
332 |
shows "a = b \<longleftrightarrow> sort_of a = sort_of b \<and> nat_of a = nat_of b" |
|
333 |
by (induct a, induct b, simp) |
|
334 |
||
335 |
lemma not_fresh_nat_of: |
|
336 |
shows "\<not> a \<sharp> nat_of" |
|
337 |
unfolding fresh_def supp_def |
|
338 |
proof (clarsimp) |
|
339 |
assume "finite {b. (a \<rightleftharpoons> b) \<bullet> nat_of \<noteq> nat_of}" |
|
340 |
hence "finite ({a} \<union> {b. (a \<rightleftharpoons> b) \<bullet> nat_of \<noteq> nat_of})" |
|
341 |
by simp |
|
342 |
then obtain b where |
|
343 |
b1: "b \<noteq> a" and |
|
344 |
b2: "sort_of b = sort_of a" and |
|
345 |
b3: "(a \<rightleftharpoons> b) \<bullet> nat_of = nat_of" |
|
346 |
by (rule obtain_atom) auto |
|
347 |
have "nat_of a = (a \<rightleftharpoons> b) \<bullet> (nat_of a)" by (simp add: permute_nat_def) |
|
348 |
also have "\<dots> = ((a \<rightleftharpoons> b) \<bullet> nat_of) ((a \<rightleftharpoons> b) \<bullet> a)" by (simp add: permute_fun_app_eq) |
|
349 |
also have "\<dots> = nat_of ((a \<rightleftharpoons> b) \<bullet> a)" using b3 by simp |
|
350 |
also have "\<dots> = nat_of b" using b2 by simp |
|
351 |
finally have "nat_of a = nat_of b" by simp |
|
352 |
with b2 have "a = b" by (simp add: atom_eq_iff) |
|
353 |
with b1 show "False" by simp |
|
354 |
qed |
|
355 |
||
356 |
lemma supp_nat_of: |
|
357 |
shows "supp nat_of = UNIV" |
|
358 |
using not_fresh_nat_of [unfolded fresh_def] by auto |
|
359 |
||
360 |
||
361 |
section {* Support for sets of atoms *} |
|
362 |
||
363 |
lemma supp_finite_atom_set: |
|
364 |
fixes S::"atom set" |
|
365 |
assumes "finite S" |
|
366 |
shows "supp S = S" |
|
367 |
apply(rule finite_supp_unique) |
|
368 |
apply(simp add: supports_def) |
|
369 |
apply(simp add: swap_set_not_in) |
|
370 |
apply(rule assms) |
|
371 |
apply(simp add: swap_set_in) |
|
372 |
done |
|
373 |
||
374 |
||
1563
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
375 |
section {* transpositions of permutations *} |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
376 |
|
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
377 |
fun |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
378 |
add_perm |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
379 |
where |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
380 |
"add_perm [] = 0" |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
381 |
| "add_perm ((a, b) # xs) = (a \<rightleftharpoons> b) + add_perm xs" |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
382 |
|
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
383 |
lemma add_perm_append: |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
384 |
shows "add_perm (xs @ ys) = add_perm xs + add_perm ys" |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
385 |
by (induct xs arbitrary: ys) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
386 |
(auto simp add: add_assoc) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
387 |
|
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
388 |
lemma perm_list_exists: |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
389 |
fixes p::perm |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
390 |
shows "\<exists>xs. p = add_perm xs \<and> supp xs \<subseteq> supp p" |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
391 |
apply(induct p taking: "\<lambda>p::perm. card (supp p)" rule: measure_induct) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
392 |
apply(rename_tac p) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
393 |
apply(case_tac "supp p = {}") |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
394 |
apply(simp) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
395 |
apply(simp add: supp_perm) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
396 |
apply(rule_tac x="[]" in exI) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
397 |
apply(simp add: supp_Nil) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
398 |
apply(simp add: expand_perm_eq) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
399 |
apply(subgoal_tac "\<exists>x. x \<in> supp p") |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
400 |
defer |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
401 |
apply(auto)[1] |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
402 |
apply(erule exE) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
403 |
apply(drule_tac x="p + (((- p) \<bullet> x) \<rightleftharpoons> x)" in spec) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
404 |
apply(drule mp) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
405 |
defer |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
406 |
apply(erule exE) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
407 |
apply(rule_tac x="xs @ [((- p) \<bullet> x, x)]" in exI) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
408 |
apply(simp add: add_perm_append) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
409 |
apply(erule conjE) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
410 |
apply(drule sym) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
411 |
apply(simp) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
412 |
apply(simp add: expand_perm_eq) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
413 |
apply(simp add: supp_append) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
414 |
apply(simp add: supp_perm supp_Cons supp_Nil supp_Pair supp_atom) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
415 |
apply(rule conjI) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
416 |
prefer 2 |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
417 |
apply(auto)[1] |
1670
ed89a26b7074
Fv/Alpha now takes into account Alpha_Type given from the parser.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
1633
diff
changeset
|
418 |
apply (metis permute_atom_def_raw permute_minus_cancel(2)) |
1563
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
419 |
defer |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
420 |
apply(rule psubset_card_mono) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
421 |
apply(simp add: finite_supp) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
422 |
apply(rule psubsetI) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
423 |
defer |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
424 |
apply(subgoal_tac "x \<notin> supp (p + (- p \<bullet> x \<rightleftharpoons> x))") |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
425 |
apply(blast) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
426 |
apply(simp add: supp_perm) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
427 |
defer |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
428 |
apply(auto simp add: supp_perm)[1] |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
429 |
apply(case_tac "x = xa") |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
430 |
apply(simp) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
431 |
apply(case_tac "((- p) \<bullet> x) = xa") |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
432 |
apply(simp) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
433 |
apply(case_tac "sort_of xa = sort_of x") |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
434 |
apply(simp) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
435 |
apply(auto)[1] |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
436 |
apply(simp) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
437 |
apply(simp) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
438 |
apply(subgoal_tac "{a. p \<bullet> (- p \<bullet> x \<rightleftharpoons> x) \<bullet> a \<noteq> a} \<subseteq> {a. p \<bullet> a \<noteq> a}") |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
439 |
apply(blast) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
440 |
apply(auto simp add: supp_perm)[1] |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
441 |
apply(case_tac "x = xa") |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
442 |
apply(simp) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
443 |
apply(case_tac "((- p) \<bullet> x) = xa") |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
444 |
apply(simp) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
445 |
apply(case_tac "sort_of xa = sort_of x") |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
446 |
apply(simp) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
447 |
apply(auto)[1] |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
448 |
apply(simp) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
449 |
apply(simp) |
1062 | 450 |
done |
451 |
||
1563
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
452 |
section {* Lemma about support and permutations *} |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
453 |
|
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
454 |
lemma supp_perm_eq: |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
455 |
assumes a: "(supp x) \<sharp>* p" |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
456 |
shows "p \<bullet> x = x" |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
457 |
proof - |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
458 |
obtain xs where eq: "p = add_perm xs" and sub: "supp xs \<subseteq> supp p" |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
459 |
using perm_list_exists by blast |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
460 |
from a have "\<forall>a \<in> supp p. a \<sharp> x" |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
461 |
by (auto simp add: fresh_star_def fresh_def supp_perm) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
462 |
with eq sub have "\<forall>a \<in> supp xs. a \<sharp> x" by auto |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
463 |
then have "add_perm xs \<bullet> x = x" |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
464 |
by (induct xs rule: add_perm.induct) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
465 |
(simp_all add: supp_Cons supp_Pair supp_atom swap_fresh_fresh) |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
466 |
then show "p \<bullet> x = x" using eq by simp |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
467 |
qed |
eb60f360a200
moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
468 |
|
1564
a4743b7cd887
proved at_set_avoiding2 which is needed for strong induction principles
Christian Urban <urbanc@in.tum.de>
parents:
1563
diff
changeset
|
469 |
section {* at_set_avoiding2 *} |
1062 | 470 |
|
1567 | 471 |
lemma at_set_avoiding2: |
1564
a4743b7cd887
proved at_set_avoiding2 which is needed for strong induction principles
Christian Urban <urbanc@in.tum.de>
parents:
1563
diff
changeset
|
472 |
assumes "finite xs" |
a4743b7cd887
proved at_set_avoiding2 which is needed for strong induction principles
Christian Urban <urbanc@in.tum.de>
parents:
1563
diff
changeset
|
473 |
and "finite (supp c)" "finite (supp x)" |
a4743b7cd887
proved at_set_avoiding2 which is needed for strong induction principles
Christian Urban <urbanc@in.tum.de>
parents:
1563
diff
changeset
|
474 |
and "xs \<sharp>* x" |
a4743b7cd887
proved at_set_avoiding2 which is needed for strong induction principles
Christian Urban <urbanc@in.tum.de>
parents:
1563
diff
changeset
|
475 |
shows "\<exists>p. (p \<bullet> xs) \<sharp>* c \<and> supp x \<sharp>* p" |
a4743b7cd887
proved at_set_avoiding2 which is needed for strong induction principles
Christian Urban <urbanc@in.tum.de>
parents:
1563
diff
changeset
|
476 |
using assms |
a4743b7cd887
proved at_set_avoiding2 which is needed for strong induction principles
Christian Urban <urbanc@in.tum.de>
parents:
1563
diff
changeset
|
477 |
apply(erule_tac c="(c, x)" in at_set_avoiding) |
a4743b7cd887
proved at_set_avoiding2 which is needed for strong induction principles
Christian Urban <urbanc@in.tum.de>
parents:
1563
diff
changeset
|
478 |
apply(simp add: supp_Pair) |
a4743b7cd887
proved at_set_avoiding2 which is needed for strong induction principles
Christian Urban <urbanc@in.tum.de>
parents:
1563
diff
changeset
|
479 |
apply(rule_tac x="p" in exI) |
a4743b7cd887
proved at_set_avoiding2 which is needed for strong induction principles
Christian Urban <urbanc@in.tum.de>
parents:
1563
diff
changeset
|
480 |
apply(simp add: fresh_star_prod) |
a4743b7cd887
proved at_set_avoiding2 which is needed for strong induction principles
Christian Urban <urbanc@in.tum.de>
parents:
1563
diff
changeset
|
481 |
apply(subgoal_tac "\<forall>a \<in> supp p. a \<sharp> x") |
a4743b7cd887
proved at_set_avoiding2 which is needed for strong induction principles
Christian Urban <urbanc@in.tum.de>
parents:
1563
diff
changeset
|
482 |
apply(auto simp add: fresh_star_def fresh_def supp_perm)[1] |
a4743b7cd887
proved at_set_avoiding2 which is needed for strong induction principles
Christian Urban <urbanc@in.tum.de>
parents:
1563
diff
changeset
|
483 |
apply(auto simp add: fresh_star_def fresh_def) |
a4743b7cd887
proved at_set_avoiding2 which is needed for strong induction principles
Christian Urban <urbanc@in.tum.de>
parents:
1563
diff
changeset
|
484 |
done |
1062 | 485 |
|
1633 | 486 |
lemma at_set_avoiding2_atom: |
487 |
assumes "finite (supp c)" "finite (supp x)" |
|
488 |
and b: "xa \<sharp> x" |
|
489 |
shows "\<exists>p. (p \<bullet> xa) \<sharp> c \<and> supp x \<sharp>* p" |
|
490 |
proof - |
|
491 |
have a: "{xa} \<sharp>* x" unfolding fresh_star_def by (simp add: b) |
|
492 |
obtain p where p1: "(p \<bullet> {xa}) \<sharp>* c" and p2: "supp x \<sharp>* p" |
|
493 |
using at_set_avoiding2[of "{xa}" "c" "x"] assms a by blast |
|
494 |
have c: "(p \<bullet> xa) \<sharp> c" using p1 |
|
495 |
unfolding fresh_star_def Ball_def |
|
496 |
by (erule_tac x="p \<bullet> xa" in allE) (simp add: eqvts) |
|
497 |
hence "p \<bullet> xa \<sharp> c \<and> supp x \<sharp>* p" using p2 by blast |
|
498 |
then show ?thesis by blast |
|
499 |
qed |
|
500 |
||
1567 | 501 |
end |