2952
|
1 |
theory Lambda
|
|
2 |
imports
|
|
3 |
"../Nominal2"
|
|
4 |
begin
|
|
5 |
|
|
6 |
|
|
7 |
atom_decl name
|
|
8 |
|
|
9 |
nominal_datatype lam =
|
|
10 |
Var "name"
|
|
11 |
| App "lam" "lam"
|
|
12 |
| Lam x::"name" l::"lam" binds x in l ("Lam [_]. _" [100, 100] 100)
|
|
13 |
|
|
14 |
|
|
15 |
nominal_datatype sem =
|
|
16 |
L "env" x::"name" l::"lam" binds x in l
|
|
17 |
| N "neu"
|
|
18 |
and neu =
|
|
19 |
V "name"
|
|
20 |
| A "neu" "sem"
|
|
21 |
and env =
|
|
22 |
ENil
|
|
23 |
| ECons "env" "name" "sem"
|
|
24 |
|
|
25 |
nominal_primrec
|
|
26 |
evals :: "env \<Rightarrow> lam \<Rightarrow> sem" and
|
|
27 |
evals_aux :: "sem \<Rightarrow> lam \<Rightarrow> env \<Rightarrow> sem"
|
|
28 |
where
|
|
29 |
"evals ENil (Var x) = N (V x)"
|
|
30 |
| "evals (ECons tail y v) (Var x) = (if x = y then v else evals tail (Var x))"
|
|
31 |
| "evals env (Lam [x]. t) = L env x t"
|
|
32 |
| "evals env (App t1 t2) = evals_aux (evals env t1) t2 env"
|
|
33 |
| "evals_aux (L cenv x t) t2 env = evals (ECons cenv x (evals env t2)) t"
|
|
34 |
| "evals_aux (N n) t2 env = N (A n (evals env t2))"
|
|
35 |
defer
|
|
36 |
defer
|
|
37 |
--"completeness"
|
|
38 |
apply(case_tac x)
|
|
39 |
apply(simp)
|
|
40 |
apply(case_tac a)
|
|
41 |
apply(simp)
|
|
42 |
apply(case_tac aa rule: sem_neu_env.exhaust(3))
|
|
43 |
apply(simp)
|
|
44 |
apply(case_tac b rule: lam.exhaust)
|
|
45 |
apply(metis)+
|
|
46 |
apply(case_tac b rule: lam.exhaust)
|
|
47 |
apply(metis)+
|
|
48 |
apply(simp)
|
|
49 |
apply(case_tac b)
|
|
50 |
apply(simp)
|
|
51 |
apply(case_tac a rule: sem_neu_env.exhaust(1))
|
|
52 |
apply(metis)+
|
|
53 |
--"compatibility"
|
|
54 |
apply(all_trivials)
|
|
55 |
apply(simp)
|
|
56 |
apply(simp)
|
|
57 |
apply(simp)
|
|
58 |
apply(simp)
|
|
59 |
defer
|
|
60 |
apply(simp)
|
|
61 |
sorry
|
|
62 |
|
|
63 |
(* can probably not proved by a trivial size argument *)
|
|
64 |
termination sorry
|
|
65 |
|
|
66 |
|