hello
authorChengsong
Wed, 29 Jun 2022 12:38:05 +0100
changeset 556 c27f04bb2262
parent 555 aecf1ddf3541
child 557 812e5d112f49
hello
ChengsongTanPhdThesis/Chapters/Finite.tex
ChengsongTanPhdThesis/Chapters/Introduction.tex
thys3/BasicIdentities.thy
thys3/Blexer.thy
thys3/Blexer2.thy
thys3/ClosedFormsBounds.thy
thys3/FBound.thy
thys3/GeneralRegexBound.thy
thys3/HarderProps.thy
thys3/Lexer.thy
thys3/LexerSimp.thy
thys3/PDerivs.thy
thys3/Positions.thy
thys3/PosixSpec.thy
thys3/RegLangs.thy
thys3/RfltsRdistinctProps.thy
thys3/Rsimp.thy
--- a/ChengsongTanPhdThesis/Chapters/Finite.tex	Tue Jun 28 21:07:42 2022 +0100
+++ b/ChengsongTanPhdThesis/Chapters/Finite.tex	Wed Jun 29 12:38:05 2022 +0100
@@ -852,13 +852,49 @@
 The reason why we take the trouble of defining 
 two separate list rewriting definitions $\frewrite$ and $\grewrite$
 is that sometimes $\grewrites$ is slightly too powerful
-that it renders certain equivalence to break after derivative:
-
-$\rsimp{(\rsimpalts \; (\map \; (\_ \backslash x) \; (\rdistinct{(\rflts \; (\map \; (\rsimp{} \; \circ \; (\lambda r. \rderssimp{r}{xs}))))}{\varnothing})))} \neq 
-	\rsimp{(\rsimpalts \; (\rdistinct{(\map \; (\_ \backslash x) \; (\rflts \; (\map \; (\rsimp{} \; \circ \; (\lambda r. \rderssimp{r}{xs})))) ) }{\varnothing})} $
+for proving equivalence.
+For example, when proving the closed-form for the alternative regular expression,
+one of the rewriting steps would be:
+\begin{lemma}
+	$\sum (\rDistinct \; (\map \; (\_ \backslash x) \; (\rflts \; rs)) \; \varnothing) \sequal
+	 \sum (\rDistinct \; (\rflts \; (\map \; (\_ \backslash x) \; rs)) \; \varnothing)
+	 $
+\end{lemma}
+\noindent
+Proving this is by first showing 
+\begin{lemma}
+	$\map \; (\_ \backslash x) \;  (\rflts \; rs) \frewrites
+\rflts \; (\map \; (\_ \backslash x) \; rs)$
+\end{lemma}
+\noindent
+and then using lemma
+\begin{lemma}\label{frewritesSimpeq}
+	If $rs_1 \frewrites rs_2 $, then $\sum (\rDistinct \; rs_1 \; \varnothing) \sequal 
+	\sum (\rDistinct \;  rs_2 \;  {})$.
+\end{lemma}
+. But this trick will not work for $\grewrites$:
+\begin{center}
+$\map \; (\_ \backslash x) \; (\rDistinct \; rs \; rset) \grewrites \rDistinct \; (\map \;
+(\_ \backslash x) \; rs) \; (\map \; (\_ \backslash x) \; rset)$
+\end{center}
+\noindent
+does \emph{not} hold.
 
 
 
+
+%this is for closed form for alts section, talk about that later------------------------------
+\begin{comment}
+\begin{center}
+$\rsimp{(\rsimpalts \; (\map \; (\_ \backslash x) \; (\rdistinct{(\rflts \; (\map \; (\rsimp{} \; \circ \; (\lambda r. \rderssimp{r}{xs}))))}{\varnothing})))} = 
+\rsimp{(\rsimpalts \; (\rdistinct{(\map \; (\_ \backslash x) \; (\rflts \; (\map \; (\rsimp{} \; \circ \; (\lambda r. \rderssimp{r}{xs})))) ) }{\varnothing}))} $
+\end{center}
+	
+\noindent
+This is not possible to prove 
+
+\end{comment}
+%this is for closed form for alts section, talk about that later------------------------------
 And we define an "grewrite" relation that works on lists:
 \begin{center}
 \begin{tabular}{lcl}
@@ -1321,14 +1357,10 @@
 
 
 There are a few key steps, one of these steps is
-\[
-rsimp (rsimp\_ALTs (map (rder x) (rdistinct (rflts (map (rsimp \circ (\lambda r. rders\_simp r xs)) rs)) {})))
-= rsimp (rsimp\_ALTs (rdistinct (map (rder x) (rflts (map (rsimp \circ (\lambda r. rders\_simp r xs)) rs))) {}))
-\]
+
 
 
 One might want to prove this by something a simple statement like: 
-$map (rder x) (rdistinct rs rset) = rdistinct (map (rder x) rs) (rder x) ` rset)$.
 
 For this to hold we want the $\textit{distinct}$ function to pick up
 the elements before and after derivatives correctly:
--- a/ChengsongTanPhdThesis/Chapters/Introduction.tex	Tue Jun 28 21:07:42 2022 +0100
+++ b/ChengsongTanPhdThesis/Chapters/Introduction.tex	Wed Jun 29 12:38:05 2022 +0100
@@ -31,6 +31,7 @@
 \newcommand{\ONE}{\mbox{\bf 1}}
 \newcommand{\AALTS}[2]{\oplus {\scriptstyle #1}\, #2}
 \newcommand{\rdistinct}[2]{\textit{rdistinct} \;\; #1 \;\; #2}
+\def\rDistinct{\textit{rdistinct}}
 \newcommand\hflat[1]{\llparenthesis  #1 \rrparenthesis_*}
 \newcommand\hflataux[1]{\llparenthesis #1 \rrparenthesis_*'}
 \newcommand\createdByStar[1]{\textit{createdByStar}(#1)}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys3/BasicIdentities.thy	Wed Jun 29 12:38:05 2022 +0100
@@ -0,0 +1,630 @@
+theory BasicIdentities 
+  imports "RfltsRdistinctProps" 
+begin
+
+
+
+lemma rder_rsimp_ALTs_commute:
+  shows "  (rder x (rsimp_ALTs rs)) = rsimp_ALTs (map (rder x) rs)"
+  apply(induct rs)
+   apply simp
+  apply(case_tac rs)
+   apply simp
+  apply auto
+  done
+
+
+
+lemma rsimp_aalts_smaller:
+  shows "rsize (rsimp_ALTs  rs) \<le> rsize (RALTS rs)"
+  apply(induct rs)
+   apply simp
+  apply simp
+  apply(case_tac "rs = []")
+   apply simp
+  apply(subgoal_tac "\<exists>rsp ap. rs = ap # rsp")
+   apply(erule exE)+
+   apply simp
+  apply simp
+  by(meson neq_Nil_conv)
+  
+
+
+
+
+lemma rSEQ_mono:
+  shows "rsize (rsimp_SEQ r1 r2) \<le>rsize (RSEQ r1 r2)"
+  apply auto
+  apply(induct r1)
+       apply auto
+      apply(case_tac "r2")
+       apply simp_all
+     apply(case_tac r2)
+          apply simp_all
+     apply(case_tac r2)
+         apply simp_all
+     apply(case_tac r2)
+        apply simp_all
+     apply(case_tac r2)
+  apply simp_all
+  done
+
+lemma ralts_cap_mono:
+  shows "rsize (RALTS rs) \<le> Suc (rsizes rs)"
+  by simp
+
+
+
+
+lemma rflts_mono:
+  shows "rsizes (rflts rs) \<le> rsizes rs"
+  apply(induct rs)
+  apply simp
+  apply(case_tac "a = RZERO")
+   apply simp
+  apply(case_tac "\<exists>rs1. a = RALTS rs1")
+  apply(erule exE)
+   apply simp
+  apply(subgoal_tac "rflts (a # rs) = a # (rflts rs)")
+   prefer 2
+  
+  using rflts_def_idiot apply blast
+  apply simp
+  done
+
+lemma rdistinct_smaller: 
+  shows "rsizes (rdistinct rs ss) \<le> rsizes rs"
+  apply (induct rs arbitrary: ss)
+   apply simp
+  by (simp add: trans_le_add2)
+
+
+lemma rsimp_alts_mono :
+  shows "\<And>x. (\<And>xa. xa \<in> set x \<Longrightarrow> rsize (rsimp xa) \<le> rsize xa)  \<Longrightarrow>
+      rsize (rsimp_ALTs (rdistinct (rflts (map rsimp x)) {})) \<le> Suc (rsizes x)"
+  apply(subgoal_tac "rsize (rsimp_ALTs (rdistinct (rflts (map rsimp x)) {} )) 
+                    \<le> rsize (RALTS (rdistinct (rflts (map rsimp x)) {} ))")
+  prefer 2
+  using rsimp_aalts_smaller apply auto[1]
+  apply(subgoal_tac "rsize (RALTS (rdistinct (rflts (map rsimp x)) {})) \<le>Suc (rsizes (rdistinct (rflts (map rsimp x)) {}))")
+  prefer 2
+  using ralts_cap_mono apply blast
+  apply(subgoal_tac "rsizes (rdistinct (rflts (map rsimp x)) {}) \<le> rsizes (rflts (map rsimp x))")
+  prefer 2
+  using rdistinct_smaller apply presburger
+  apply(subgoal_tac "rsizes (rflts (map rsimp x)) \<le> rsizes (map rsimp x)")
+  prefer 2
+  using rflts_mono apply blast
+  apply(subgoal_tac "rsizes (map rsimp x) \<le> rsizes x")
+  prefer 2
+  
+  apply (simp add: sum_list_mono)
+  by linarith
+
+
+
+
+
+lemma rsimp_mono:
+  shows "rsize (rsimp r) \<le> rsize r"
+  apply(induct r)
+  apply simp_all
+  apply(subgoal_tac "rsize (rsimp_SEQ (rsimp r1) (rsimp r2)) \<le> rsize (RSEQ (rsimp r1) (rsimp r2))")
+    apply force
+  using rSEQ_mono
+   apply presburger
+  using rsimp_alts_mono by auto
+
+lemma idiot:
+  shows "rsimp_SEQ RONE r = r"
+  apply(case_tac r)
+       apply simp_all
+  done
+
+
+
+
+
+lemma idiot2:
+  shows " \<lbrakk>r1 \<noteq> RZERO; r1 \<noteq> RONE;r2 \<noteq> RZERO\<rbrakk>
+    \<Longrightarrow> rsimp_SEQ r1 r2 = RSEQ r1 r2"
+  apply(case_tac r1)
+       apply(case_tac r2)
+  apply simp_all
+     apply(case_tac r2)
+  apply simp_all
+     apply(case_tac r2)
+  apply simp_all
+   apply(case_tac r2)
+  apply simp_all
+  apply(case_tac r2)
+       apply simp_all
+  done
+
+lemma rders__onechar:
+  shows " (rders_simp r [c]) =  (rsimp (rders r [c]))"
+  by simp
+
+lemma rders_append:
+  "rders c (s1 @ s2) = rders (rders c s1) s2"
+  apply(induct s1 arbitrary: c s2)
+  apply(simp_all)
+  done
+
+lemma rders_simp_append:
+  "rders_simp c (s1 @ s2) = rders_simp (rders_simp c s1) s2"
+  apply(induct s1 arbitrary: c s2)
+   apply(simp_all)
+  done
+
+
+lemma rders_simp_one_char:
+  shows "rders_simp r [c] = rsimp (rder c r)"
+  apply auto
+  done
+
+
+
+
+
+lemma  k0a:
+  shows "rflts [RALTS rs] =   rs"
+  apply(simp)
+  done
+
+lemma bbbbs:
+  assumes "good r" "r = RALTS rs"
+  shows "rsimp_ALTs  (rflts [r]) = RALTS rs"
+  using  assms
+  by (metis good.simps(4) good.simps(5) k0a rsimp_ALTs.elims)
+
+lemma bbbbs1:
+  shows "nonalt r \<or> (\<exists> rs. r  = RALTS  rs)"
+  by (meson nonalt.elims(3))
+
+
+
+lemma good0:
+  assumes "rs \<noteq> Nil" "\<forall>r \<in> set rs. nonalt r" "distinct rs"
+  shows "good (rsimp_ALTs rs) \<longleftrightarrow> (\<forall>r \<in> set rs. good r)"
+  using  assms
+  apply(induct  rs rule: rsimp_ALTs.induct)
+  apply(auto)
+  done
+
+lemma flts1:
+  assumes "good r" 
+  shows "rflts [r] \<noteq> []"
+  using  assms
+  apply(induct r)
+       apply(simp_all)
+  using good.simps(4) by blast
+
+lemma flts2:
+  assumes "good r" 
+  shows "\<forall>r' \<in> set (rflts [r]). good r' \<and> nonalt r'"
+  using  assms
+  apply(induct r)
+       apply(simp)
+      apply(simp)
+     apply(simp)
+    prefer 2
+    apply(simp)
+    apply(auto)[1]
+  
+     apply (metis flts1 good.simps(5) good.simps(6) k0a neq_Nil_conv)
+    apply (metis flts1 good.simps(5) good.simps(6) k0a neq_Nil_conv)
+   apply fastforce
+  apply(simp)
+  done  
+
+
+
+lemma flts3:
+  assumes "\<forall>r \<in> set rs. good r \<or> r = RZERO" 
+  shows "\<forall>r \<in> set (rflts rs). good r"
+  using  assms
+  apply(induct rs rule: rflts.induct)
+        apply(simp_all)
+  by (metis UnE flts2 k0a)
+
+
+lemma  k0:
+  shows "rflts (r # rs1) = rflts [r] @ rflts rs1"
+  apply(induct r arbitrary: rs1)
+   apply(auto)
+  done
+
+
+lemma good_SEQ:
+  assumes "r1 \<noteq> RZERO" "r2 \<noteq> RZERO" " r1 \<noteq> RONE"
+  shows "good (RSEQ r1 r2) = (good r1 \<and> good r2)"
+  using assms
+  apply(case_tac r1)
+       apply(simp_all)
+  apply(case_tac r2)
+          apply(simp_all)
+  apply(case_tac r2)
+         apply(simp_all)
+  apply(case_tac r2)
+        apply(simp_all)
+  apply(case_tac r2)
+       apply(simp_all)
+  done
+
+lemma rsize0:
+  shows "0 < rsize r"
+  apply(induct  r)
+       apply(auto)
+  done
+
+
+
+
+
+
+
+
+
+
+
+lemma nn1qq:
+  assumes "nonnested (RALTS rs)"
+  shows "\<nexists> rs1. RALTS rs1 \<in> set rs"
+  using assms
+  apply(induct rs rule: rflts.induct)
+  apply(auto)
+  done
+
+ 
+
+lemma n0:
+  shows "nonnested (RALTS rs) \<longleftrightarrow> (\<forall>r \<in> set rs. nonalt r)"
+  apply(induct rs )
+   apply(auto)
+    apply (metis list.set_intros(1) nn1qq nonalt.elims(3))
+  apply (metis nonalt.elims(2) nonnested.simps(3) nonnested.simps(4) nonnested.simps(5) nonnested.simps(6) nonnested.simps(7))
+  using bbbbs1 apply fastforce
+  by (metis bbbbs1 list.set_intros(2) nn1qq)
+
+  
+  
+
+lemma nn1c:
+  assumes "\<forall>r \<in> set rs. nonnested r"
+  shows "\<forall>r \<in> set (rflts rs). nonalt r"
+  using assms
+  apply(induct rs rule: rflts.induct)
+        apply(auto)
+  using n0 by blast
+
+lemma nn1bb:
+  assumes "\<forall>r \<in> set rs. nonalt r"
+  shows "nonnested (rsimp_ALTs  rs)"
+  using assms
+  apply(induct  rs rule: rsimp_ALTs.induct)
+    apply(auto)
+  using nonalt.simps(1) nonnested.elims(3) apply blast
+  using n0 by auto
+
+lemma bsimp_ASEQ0:
+  shows "rsimp_SEQ  r1 RZERO = RZERO"
+  apply(induct r1)
+  apply(auto)
+  done
+
+lemma nn1b:
+  shows "nonnested (rsimp r)"
+  apply(induct r)
+       apply(simp_all)
+  apply(case_tac "rsimp r1 = RZERO")
+    apply(simp)
+ apply(case_tac "rsimp r2 = RZERO")
+   apply(simp)
+    apply(subst bsimp_ASEQ0)
+  apply(simp)
+  apply(case_tac "\<exists>bs. rsimp r1 = RONE")
+    apply(auto)[1]
+  using idiot apply fastforce
+  using idiot2 nonnested.simps(11) apply presburger
+  by (metis (mono_tags, lifting) Diff_empty image_iff list.set_map nn1bb nn1c rdistinct_set_equality1)
+
+lemma nonalt_flts_rd:
+  shows "\<lbrakk>xa \<in> set (rdistinct (rflts (map rsimp rs)) {})\<rbrakk>
+       \<Longrightarrow> nonalt xa"
+  by (metis Diff_empty ex_map_conv nn1b nn1c rdistinct_set_equality1)
+
+
+
+
+lemma bsimp_ASEQ2:
+  shows "rsimp_SEQ RONE r2 =  r2"
+  apply(induct r2)
+  apply(auto)
+  done
+
+lemma elem_smaller_than_set:
+  shows "xa \<in> set  list \<Longrightarrow> rsize xa < Suc (rsizes list)"
+  apply(induct list)
+   apply simp
+  by (metis image_eqI le_imp_less_Suc list.set_map member_le_sum_list)
+
+lemma rsimp_list_mono:
+  shows "rsizes (map rsimp rs) \<le> rsizes rs"
+  apply(induct rs)
+   apply simp+
+  by (simp add: add_mono_thms_linordered_semiring(1) rsimp_mono)
+
+
+(*says anything coming out of simp+flts+db will be good*)
+lemma good2_obv_simplified:
+  shows " \<lbrakk>\<forall>y. rsize y < Suc (rsizes rs) \<longrightarrow> good (rsimp y) \<or> rsimp y = RZERO;
+           xa \<in> set (rdistinct (rflts (map rsimp rs)) {})\<rbrakk> \<Longrightarrow> good xa"
+  apply(subgoal_tac " \<forall>xa' \<in> set (map rsimp rs). good xa' \<or> xa' = RZERO")
+  prefer 2
+   apply (simp add: elem_smaller_than_set)
+  by (metis Diff_empty flts3 rdistinct_set_equality1)
+
+
+
+
+lemma good1:
+  shows "good (rsimp a) \<or> rsimp a = RZERO"
+  apply(induct a taking: rsize rule: measure_induct)
+  apply(case_tac x)
+  apply(simp)
+  apply(simp)
+  apply(simp)
+  prefer 3
+    apply(simp)
+   prefer 2
+   apply(simp only:)
+   apply simp
+  apply (smt (verit, ccfv_threshold) add_mono_thms_linordered_semiring(1) elem_smaller_than_set good0 good2_obv_simplified le_eq_less_or_eq nonalt_flts_rd order_less_trans plus_1_eq_Suc rdistinct_does_the_job rdistinct_smaller rflts_mono rsimp_ALTs.simps(1) rsimp_list_mono)
+  apply simp
+  apply(subgoal_tac "good (rsimp x41) \<or> rsimp x41 = RZERO")
+   apply(subgoal_tac "good (rsimp x42) \<or> rsimp x42 = RZERO")
+    apply(case_tac "rsimp x41 = RZERO")
+     apply simp
+    apply(case_tac "rsimp x42 = RZERO")
+     apply simp
+  using bsimp_ASEQ0 apply blast
+    apply(subgoal_tac "good (rsimp x41)")
+     apply(subgoal_tac "good (rsimp x42)")
+      apply simp
+  apply (metis bsimp_ASEQ2 good_SEQ idiot2)
+  apply blast
+  apply fastforce
+  using less_add_Suc2 apply blast  
+  using less_iff_Suc_add by blast
+
+lemma RL_rnullable:
+  shows "rnullable r = ([] \<in> RL r)"
+  apply(induct r)
+  apply(auto simp add: Sequ_def)
+  done
+
+lemma RL_rder:
+  shows "RL (rder c r) = Der c (RL r)"
+  apply(induct r)
+  apply(auto simp add: Sequ_def Der_def)
+        apply (metis append_Cons)
+  using RL_rnullable apply blast
+  apply (metis append_eq_Cons_conv)
+  apply (metis append_Cons)
+  apply (metis RL_rnullable append_eq_Cons_conv)
+  apply (metis Star.step append_Cons)
+  using Star_decomp by auto
+
+
+
+
+lemma RL_rsimp_RSEQ:
+  shows "RL (rsimp_SEQ r1 r2) = (RL r1 ;; RL r2)"
+  apply(induct r1 r2 rule: rsimp_SEQ.induct)
+  apply(simp_all)
+  done
+
+
+
+lemma RL_rsimp_RALTS:
+  shows "RL (rsimp_ALTs rs) = (\<Union> (set (map RL rs)))"
+  apply(induct rs rule: rsimp_ALTs.induct)
+  apply(simp_all)
+  done
+
+lemma RL_rsimp_rdistinct:
+  shows "(\<Union> (set (map RL (rdistinct rs {})))) = (\<Union> (set (map RL rs)))"
+  apply(auto)
+  apply (metis Diff_iff rdistinct_set_equality1)
+  by (metis Diff_empty rdistinct_set_equality1)
+
+lemma RL_rsimp_rflts:
+  shows "(\<Union> (set (map RL (rflts rs)))) = (\<Union> (set (map RL rs)))"
+  apply(induct rs rule: rflts.induct)
+  apply(simp_all)
+  done
+
+lemma RL_rsimp:
+  shows "RL r = RL (rsimp r)"
+  apply(induct r rule: rsimp.induct)
+       apply(auto simp add: Sequ_def RL_rsimp_RSEQ)
+  using RL_rsimp_RALTS RL_rsimp_rdistinct RL_rsimp_rflts apply auto[1]
+  by (smt (verit, del_insts) RL_rsimp_RALTS RL_rsimp_rdistinct RL_rsimp_rflts UN_E image_iff list.set_map)
+
+
+
+lemma der_simp_nullability:
+  shows "rnullable r = rnullable (rsimp r)"
+  using RL_rnullable RL_rsimp by auto
+  
+
+lemma qqq1:
+  shows "RZERO \<notin> set (rflts (map rsimp rs))"
+  by (metis ex_map_conv flts3 good.simps(1) good1)
+
+
+
+
+
+lemma flts_single1:
+  assumes "nonalt r" "nonazero r"
+  shows "rflts [r] = [r]"
+  using assms
+  apply(induct r)
+  apply(auto)
+  done
+
+lemma nonalt0_flts_keeps:
+  shows "(a \<noteq> RZERO) \<and> (\<forall>rs. a \<noteq> RALTS rs) \<Longrightarrow> rflts (a # xs) = a # rflts xs"
+  apply(case_tac a)
+       apply simp+
+  done
+
+
+lemma nonalt0_fltseq:
+  shows "\<forall>r \<in> set rs. r \<noteq> RZERO \<and> nonalt r \<Longrightarrow> rflts rs = rs"
+  apply(induct rs)
+   apply simp
+  apply(case_tac "a = RZERO")
+   apply fastforce
+  apply(case_tac "\<exists>rs1. a = RALTS rs1")
+   apply(erule exE)
+   apply simp+
+  using nonalt0_flts_keeps by presburger
+
+  
+
+
+lemma goodalts_nonalt:
+  shows "good (RALTS rs) \<Longrightarrow> rflts rs = rs"
+  apply(induct x == "RALTS rs" arbitrary: rs rule: good.induct)
+    apply simp
+  
+  using good.simps(5) apply blast
+  apply simp
+  apply(case_tac "r1 = RZERO")
+  using good.simps(1) apply force
+  apply(case_tac "r2 = RZERO")
+  using good.simps(1) apply force
+  apply(subgoal_tac "rflts (r1 # r2 # rs) = r1 # r2 # rflts rs")
+  prefer 2
+   apply (metis nonalt.simps(1) rflts_def_idiot)
+  apply(subgoal_tac "\<forall>r \<in> set rs. r \<noteq> RZERO \<and> nonalt r")
+   apply(subgoal_tac "rflts rs = rs")
+    apply presburger
+  using nonalt0_fltseq apply presburger
+  using good.simps(1) by blast
+  
+
+  
+
+
+lemma test:
+  assumes "good r"
+  shows "rsimp r = r"
+
+  using assms
+  apply(induct rule: good.induct)
+                      apply simp
+                      apply simp
+                      apply simp
+                      apply simp
+                      apply simp
+                      apply(subgoal_tac "distinct (r1 # r2 # rs)")
+  prefer 2
+  using good.simps(6) apply blast
+  apply(subgoal_tac "rflts (r1 # r2 # rs ) = r1 # r2 # rs")
+  prefer 2
+  using goodalts_nonalt apply blast
+
+                      apply(subgoal_tac "r1 \<noteq> r2")
+  prefer 2
+                      apply (meson distinct_length_2_or_more)
+                      apply(subgoal_tac "r1 \<notin> set rs")
+                      apply(subgoal_tac "r2 \<notin> set rs")
+                      apply(subgoal_tac "\<forall>r \<in> set rs. rsimp r = r")
+                      apply(subgoal_tac "map rsimp rs = rs")
+  apply simp             
+                      apply(subgoal_tac "\<forall>r \<in>  {r1, r2}. r \<notin> set rs")
+  apply (metis distinct_not_exist rdistinct_on_distinct)
+  
+                      apply blast
+                      apply (meson map_idI)
+                      apply (metis good.simps(6) insert_iff list.simps(15))
+
+  apply (meson distinct.simps(2))
+                      apply (simp add: distinct_length_2_or_more)
+                      apply simp+
+  done
+
+
+
+lemma rsimp_idem:
+  shows "rsimp (rsimp r) = rsimp r"
+  using test good1
+  by force
+
+corollary rsimp_inner_idem4:
+  shows "rsimp r = RALTS rs \<Longrightarrow> rflts rs = rs"
+  by (metis good1 goodalts_nonalt rrexp.simps(12))
+
+
+corollary head_one_more_simp:
+  shows "map rsimp (r # rs) = map rsimp (( rsimp r) # rs)"
+  by (simp add: rsimp_idem)
+
+
+
+
+lemma basic_regex_property1:
+  shows "rnullable r \<Longrightarrow> rsimp r \<noteq> RZERO"
+  apply(induct r rule: rsimp.induct)
+  apply(auto)
+  apply (metis idiot idiot2 rrexp.distinct(5))
+  by (metis der_simp_nullability rnullable.simps(1) rnullable.simps(4) rsimp.simps(2))
+
+
+
+lemma no_alt_short_list_after_simp:
+  shows "RALTS rs = rsimp r \<Longrightarrow> rsimp_ALTs rs = RALTS rs"
+  by (metis bbbbs good1 k0a rrexp.simps(12))
+
+
+lemma no_further_dB_after_simp:
+  shows "RALTS rs = rsimp r \<Longrightarrow> rdistinct rs {} = rs"
+  apply(subgoal_tac "good (RALTS rs)")
+  apply(subgoal_tac "distinct rs")
+  using rdistinct_on_distinct apply blast
+  apply (metis distinct.simps(1) distinct.simps(2) empty_iff good.simps(6) list.exhaust set_empty2)
+  using good1 by fastforce
+
+
+lemma idem_after_simp1:
+  shows "rsimp_ALTs (rdistinct (rflts [rsimp aa]) {}) = rsimp aa"
+  apply(case_tac "rsimp aa")
+  apply simp+
+  apply (metis no_alt_short_list_after_simp no_further_dB_after_simp)
+  by simp
+
+
+
+
+
+(*equalities with rsimp *)
+lemma identity_wwo0:
+  shows "rsimp (rsimp_ALTs (RZERO # rs)) = rsimp (rsimp_ALTs rs)"
+  by (metis idem_after_simp1 list.exhaust list.simps(8) list.simps(9) rflts.simps(2) rsimp.simps(2) rsimp.simps(3) rsimp_ALTs.simps(1) rsimp_ALTs.simps(2) rsimp_ALTs.simps(3))
+
+
+
+
+
+
+
+(*some basic facts about rsimp*)
+
+unused_thms
+
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys3/Blexer.thy	Wed Jun 29 12:38:05 2022 +0100
@@ -0,0 +1,454 @@
+
+theory Blexer
+  imports "Lexer" "PDerivs"
+begin
+
+section \<open>Bit-Encodings\<close>
+
+datatype bit = Z | S
+
+fun code :: "val \<Rightarrow> bit list"
+where
+  "code Void = []"
+| "code (Char c) = []"
+| "code (Left v) = Z # (code v)"
+| "code (Right v) = S # (code v)"
+| "code (Seq v1 v2) = (code v1) @ (code v2)"
+| "code (Stars []) = [S]"
+| "code (Stars (v # vs)) =  (Z # code v) @ code (Stars vs)"
+
+
+fun 
+  Stars_add :: "val \<Rightarrow> val \<Rightarrow> val"
+where
+  "Stars_add v (Stars vs) = Stars (v # vs)"
+
+function
+  decode' :: "bit list \<Rightarrow> rexp \<Rightarrow> (val * bit list)"
+where
+  "decode' bs ZERO = (undefined, bs)"
+| "decode' bs ONE = (Void, bs)"
+| "decode' bs (CH d) = (Char d, bs)"
+| "decode' [] (ALT r1 r2) = (Void, [])"
+| "decode' (Z # bs) (ALT r1 r2) = (let (v, bs') = decode' bs r1 in (Left v, bs'))"
+| "decode' (S # bs) (ALT r1 r2) = (let (v, bs') = decode' bs r2 in (Right v, bs'))"
+| "decode' bs (SEQ r1 r2) = (let (v1, bs') = decode' bs r1 in
+                             let (v2, bs'') = decode' bs' r2 in (Seq v1 v2, bs''))"
+| "decode' [] (STAR r) = (Void, [])"
+| "decode' (S # bs) (STAR r) = (Stars [], bs)"
+| "decode' (Z # bs) (STAR r) = (let (v, bs') = decode' bs r in
+                                    let (vs, bs'') = decode' bs' (STAR r) 
+                                    in (Stars_add v vs, bs''))"
+by pat_completeness auto
+
+lemma decode'_smaller:
+  assumes "decode'_dom (bs, r)"
+  shows "length (snd (decode' bs r)) \<le> length bs"
+using assms
+apply(induct bs r)
+apply(auto simp add: decode'.psimps split: prod.split)
+using dual_order.trans apply blast
+by (meson dual_order.trans le_SucI)
+
+termination "decode'"  
+apply(relation "inv_image (measure(%cs. size cs) <*lex*> measure(%s. size s)) (%(ds,r). (r,ds))") 
+apply(auto dest!: decode'_smaller)
+by (metis less_Suc_eq_le snd_conv)
+
+definition
+  decode :: "bit list \<Rightarrow> rexp \<Rightarrow> val option"
+where
+  "decode ds r \<equiv> (let (v, ds') = decode' ds r 
+                  in (if ds' = [] then Some v else None))"
+
+lemma decode'_code_Stars:
+  assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> (\<forall>x. decode' (code v @ x) r = (v, x)) \<and> flat v \<noteq> []" 
+  shows "decode' (code (Stars vs) @ ds) (STAR r) = (Stars vs, ds)"
+  using assms
+  apply(induct vs)
+  apply(auto)
+  done
+
+lemma decode'_code:
+  assumes "\<Turnstile> v : r"
+  shows "decode' ((code v) @ ds) r = (v, ds)"
+using assms
+  apply(induct v r arbitrary: ds) 
+  apply(auto)
+  using decode'_code_Stars by blast
+
+lemma decode_code:
+  assumes "\<Turnstile> v : r"
+  shows "decode (code v) r = Some v"
+  using assms unfolding decode_def
+  by (smt append_Nil2 decode'_code old.prod.case)
+
+
+section {* Annotated Regular Expressions *}
+
+datatype arexp = 
+  AZERO
+| AONE "bit list"
+| ACHAR "bit list" char
+| ASEQ "bit list" arexp arexp
+| AALTs "bit list" "arexp list"
+| ASTAR "bit list" arexp
+
+abbreviation
+  "AALT bs r1 r2 \<equiv> AALTs bs [r1, r2]"
+
+fun asize :: "arexp \<Rightarrow> nat" where
+  "asize AZERO = 1"
+| "asize (AONE cs) = 1" 
+| "asize (ACHAR cs c) = 1"
+| "asize (AALTs cs rs) = Suc (sum_list (map asize rs))"
+| "asize (ASEQ cs r1 r2) = Suc (asize r1 + asize r2)"
+| "asize (ASTAR cs r) = Suc (asize r)"
+
+fun 
+  erase :: "arexp \<Rightarrow> rexp"
+where
+  "erase AZERO = ZERO"
+| "erase (AONE _) = ONE"
+| "erase (ACHAR _ c) = CH c"
+| "erase (AALTs _ []) = ZERO"
+| "erase (AALTs _ [r]) = (erase r)"
+| "erase (AALTs bs (r#rs)) = ALT (erase r) (erase (AALTs bs rs))"
+| "erase (ASEQ _ r1 r2) = SEQ (erase r1) (erase r2)"
+| "erase (ASTAR _ r) = STAR (erase r)"
+
+
+fun fuse :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp" where
+  "fuse bs AZERO = AZERO"
+| "fuse bs (AONE cs) = AONE (bs @ cs)" 
+| "fuse bs (ACHAR cs c) = ACHAR (bs @ cs) c"
+| "fuse bs (AALTs cs rs) = AALTs (bs @ cs) rs"
+| "fuse bs (ASEQ cs r1 r2) = ASEQ (bs @ cs) r1 r2"
+| "fuse bs (ASTAR cs r) = ASTAR (bs @ cs) r"
+
+lemma fuse_append:
+  shows "fuse (bs1 @ bs2) r = fuse bs1 (fuse bs2 r)"
+  apply(induct r)
+  apply(auto)
+  done
+
+
+fun intern :: "rexp \<Rightarrow> arexp" where
+  "intern ZERO = AZERO"
+| "intern ONE = AONE []"
+| "intern (CH c) = ACHAR [] c"
+| "intern (ALT r1 r2) = AALT [] (fuse [Z] (intern r1)) 
+                                (fuse [S]  (intern r2))"
+| "intern (SEQ r1 r2) = ASEQ [] (intern r1) (intern r2)"
+| "intern (STAR r) = ASTAR [] (intern r)"
+
+
+fun retrieve :: "arexp \<Rightarrow> val \<Rightarrow> bit list" where
+  "retrieve (AONE bs) Void = bs"
+| "retrieve (ACHAR bs c) (Char d) = bs"
+| "retrieve (AALTs bs [r]) v = bs @ retrieve r v"
+| "retrieve (AALTs bs (r#rs)) (Left v) = bs @ retrieve r v"
+| "retrieve (AALTs bs (r#rs)) (Right v) = bs @ retrieve (AALTs [] rs) v"
+| "retrieve (ASEQ bs r1 r2) (Seq v1 v2) = bs @ retrieve r1 v1 @ retrieve r2 v2"
+| "retrieve (ASTAR bs r) (Stars []) = bs @ [S]"
+| "retrieve (ASTAR bs r) (Stars (v#vs)) = 
+     bs @ [Z] @ retrieve r v @ retrieve (ASTAR [] r) (Stars vs)"
+
+
+
+fun
+ bnullable :: "arexp \<Rightarrow> bool"
+where
+  "bnullable (AZERO) = False"
+| "bnullable (AONE bs) = True"
+| "bnullable (ACHAR bs c) = False"
+| "bnullable (AALTs bs rs) = (\<exists>r \<in> set rs. bnullable r)"
+| "bnullable (ASEQ bs r1 r2) = (bnullable r1 \<and> bnullable r2)"
+| "bnullable (ASTAR bs r) = True"
+
+abbreviation
+  bnullables :: "arexp list \<Rightarrow> bool"
+where
+  "bnullables rs \<equiv> (\<exists>r \<in> set rs. bnullable r)"
+
+fun 
+  bmkeps :: "arexp \<Rightarrow> bit list" and
+  bmkepss :: "arexp list \<Rightarrow> bit list"
+where
+  "bmkeps(AONE bs) = bs"
+| "bmkeps(ASEQ bs r1 r2) = bs @ (bmkeps r1) @ (bmkeps r2)"
+| "bmkeps(AALTs bs rs) = bs @ (bmkepss rs)"
+| "bmkeps(ASTAR bs r) = bs @ [S]"
+| "bmkepss (r # rs) = (if bnullable(r) then (bmkeps r) else (bmkepss rs))"
+
+lemma bmkepss1:
+  assumes "\<not> bnullables rs1"
+  shows "bmkepss (rs1 @ rs2) = bmkepss rs2"
+  using assms
+  by (induct rs1) (auto)
+
+lemma bmkepss2:
+  assumes "bnullables rs1"
+  shows "bmkepss (rs1 @ rs2) = bmkepss rs1"
+  using assms
+  by (induct rs1) (auto)
+
+
+fun
+ bder :: "char \<Rightarrow> arexp \<Rightarrow> arexp"
+where
+  "bder c (AZERO) = AZERO"
+| "bder c (AONE bs) = AZERO"
+| "bder c (ACHAR bs d) = (if c = d then AONE bs else AZERO)"
+| "bder c (AALTs bs rs) = AALTs bs (map (bder c) rs)"
+| "bder c (ASEQ bs r1 r2) = 
+     (if bnullable r1
+      then AALT bs (ASEQ [] (bder c r1) r2) (fuse (bmkeps r1) (bder c r2))
+      else ASEQ bs (bder c r1) r2)"
+| "bder c (ASTAR bs r) = ASEQ (bs @ [Z]) (bder c r) (ASTAR [] r)"
+
+
+fun 
+  bders :: "arexp \<Rightarrow> string \<Rightarrow> arexp"
+where
+  "bders r [] = r"
+| "bders r (c#s) = bders (bder c r) s"
+
+lemma bders_append:
+  "bders c (s1 @ s2) = bders (bders c s1) s2"
+  apply(induct s1 arbitrary: c s2)
+  apply(simp_all)
+  done
+
+lemma bnullable_correctness:
+  shows "nullable (erase r) = bnullable r"
+  apply(induct r rule: erase.induct)
+  apply(simp_all)
+  done
+
+lemma erase_fuse:
+  shows "erase (fuse bs r) = erase r"
+  apply(induct r rule: erase.induct)
+  apply(simp_all)
+  done
+
+lemma erase_intern [simp]:
+  shows "erase (intern r) = r"
+  apply(induct r)
+  apply(simp_all add: erase_fuse)
+  done
+
+lemma erase_bder [simp]:
+  shows "erase (bder a r) = der a (erase r)"
+  apply(induct r rule: erase.induct)
+  apply(simp_all add: erase_fuse bnullable_correctness)
+  done
+
+lemma erase_bders [simp]:
+  shows "erase (bders r s) = ders s (erase r)"
+  apply(induct s arbitrary: r )
+  apply(simp_all)
+  done
+
+lemma bnullable_fuse:
+  shows "bnullable (fuse bs r) = bnullable r"
+  apply(induct r arbitrary: bs)
+  apply(auto)
+  done
+
+lemma retrieve_encode_STARS:
+  assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> code v = retrieve (intern r) v"
+  shows "code (Stars vs) = retrieve (ASTAR [] (intern r)) (Stars vs)"
+  using assms
+  apply(induct vs)
+  apply(simp_all)
+  done
+
+lemma retrieve_fuse2:
+  assumes "\<Turnstile> v : (erase r)"
+  shows "retrieve (fuse bs r) v = bs @ retrieve r v"
+  using assms
+  apply(induct r arbitrary: v bs)
+  apply(auto elim: Prf_elims)[4]
+  apply(case_tac x2a)
+  apply(simp)
+  using Prf_elims(1) apply blast
+  apply(case_tac x2a)
+  apply(simp)
+  apply(simp)
+  apply(case_tac list)
+  apply(simp)
+  apply(simp)
+  apply (smt (verit, best) Prf_elims(3) append_assoc retrieve.simps(4) retrieve.simps(5))
+  apply(simp)
+  using retrieve_encode_STARS
+  apply(auto elim!: Prf_elims)[1]
+  apply(case_tac vs)
+  apply(simp)
+  apply(simp)
+  done
+
+lemma retrieve_fuse:
+  assumes "\<Turnstile> v : r"
+  shows "retrieve (fuse bs (intern r)) v = bs @ retrieve (intern r) v"
+  using assms 
+  by (simp_all add: retrieve_fuse2)
+
+
+lemma retrieve_code:
+  assumes "\<Turnstile> v : r"
+  shows "code v = retrieve (intern r) v"
+  using assms
+  apply(induct v r )
+  apply(simp_all add: retrieve_fuse retrieve_encode_STARS)
+  done
+
+
+lemma retrieve_AALTs_bnullable1:
+  assumes "bnullable r"
+  shows "retrieve (AALTs bs (r # rs)) (mkeps (erase (AALTs bs (r # rs))))
+         = bs @ retrieve r (mkeps (erase r))"
+  using assms
+  apply(case_tac rs)
+  apply(auto simp add: bnullable_correctness)
+  done
+
+lemma retrieve_AALTs_bnullable2:
+  assumes "\<not>bnullable r" "bnullables rs"
+  shows "retrieve (AALTs bs (r # rs)) (mkeps (erase (AALTs bs (r # rs))))
+         = retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs)))"
+  using assms
+  apply(induct rs arbitrary: r bs)
+  apply(auto)
+  using bnullable_correctness apply blast
+  apply(case_tac rs)
+  apply(auto)
+  using bnullable_correctness apply blast
+  apply(case_tac rs)
+  apply(auto)
+  done
+
+lemma bmkeps_retrieve_AALTs: 
+  assumes "\<forall>r \<in> set rs. bnullable r \<longrightarrow> bmkeps r = retrieve r (mkeps (erase r))" 
+          "bnullables rs"
+  shows "bs @ bmkepss rs = retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs)))"
+ using assms
+  apply(induct rs arbitrary: bs)
+  apply(auto)
+  using retrieve_AALTs_bnullable1 apply presburger
+  apply (metis retrieve_AALTs_bnullable2)
+  apply (simp add: retrieve_AALTs_bnullable1)
+  by (metis retrieve_AALTs_bnullable2)
+
+    
+lemma bmkeps_retrieve:
+  assumes "bnullable r"
+  shows "bmkeps r = retrieve r (mkeps (erase r))"
+  using assms
+  apply(induct r)
+  apply(auto)  
+  using bmkeps_retrieve_AALTs by auto
+
+lemma bder_retrieve:
+  assumes "\<Turnstile> v : der c (erase r)"
+  shows "retrieve (bder c r) v = retrieve r (injval (erase r) c v)"
+  using assms  
+  apply(induct r arbitrary: v rule: erase.induct)
+  using Prf_elims(1) apply auto[1]
+  using Prf_elims(1) apply auto[1]
+  apply(auto)[1]
+  apply (metis Prf_elims(4) injval.simps(1) retrieve.simps(1) retrieve.simps(2))
+  using Prf_elims(1) apply blast
+  (* AALTs case *)
+  apply(simp)
+  apply(erule Prf_elims)
+  apply(simp)
+  apply(simp)
+  apply(rename_tac "r\<^sub>1" "r\<^sub>2" rs v)
+  apply(erule Prf_elims)
+  apply(simp)
+  apply(simp)
+  apply(case_tac rs)
+  apply(simp)
+  apply(simp)
+  using Prf_elims(3) apply fastforce
+  (* ASEQ case *) 
+  apply(simp)
+  apply(case_tac "nullable (erase r1)")
+  apply(simp)
+  apply(erule Prf_elims)
+  using Prf_elims(2) bnullable_correctness apply force
+  apply (simp add: bmkeps_retrieve bnullable_correctness retrieve_fuse2)
+  apply (simp add: bmkeps_retrieve bnullable_correctness retrieve_fuse2)
+  using Prf_elims(2) apply force
+  (* ASTAR case *)  
+  apply(rename_tac bs r v)
+  apply(simp)  
+  apply(erule Prf_elims)
+  apply(clarify)
+  apply(erule Prf_elims)
+  apply(clarify)
+  by (simp add: retrieve_fuse2)
+
+
+lemma MAIN_decode:
+  assumes "\<Turnstile> v : ders s r"
+  shows "Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r"
+  using assms
+proof (induct s arbitrary: v rule: rev_induct)
+  case Nil
+  have "\<Turnstile> v : ders [] r" by fact
+  then have "\<Turnstile> v : r" by simp
+  then have "Some v = decode (retrieve (intern r) v) r"
+    using decode_code retrieve_code by auto
+  then show "Some (flex r id [] v) = decode (retrieve (bders (intern r) []) v) r"
+    by simp
+next
+  case (snoc c s v)
+  have IH: "\<And>v. \<Turnstile> v : ders s r \<Longrightarrow> 
+     Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r" by fact
+  have asm: "\<Turnstile> v : ders (s @ [c]) r" by fact
+  then have asm2: "\<Turnstile> injval (ders s r) c v : ders s r" 
+    by (simp add: Prf_injval ders_append)
+  have "Some (flex r id (s @ [c]) v) = Some (flex r id s (injval (ders s r) c v))"
+    by (simp add: flex_append)
+  also have "... = decode (retrieve (bders (intern r) s) (injval (ders s r) c v)) r"
+    using asm2 IH by simp
+  also have "... = decode (retrieve (bder c (bders (intern r) s)) v) r"
+    using asm by (simp_all add: bder_retrieve ders_append)
+  finally show "Some (flex r id (s @ [c]) v) = 
+                 decode (retrieve (bders (intern r) (s @ [c])) v) r" by (simp add: bders_append)
+qed
+
+definition blexer where
+ "blexer r s \<equiv> if bnullable (bders (intern r) s) then 
+                decode (bmkeps (bders (intern r) s)) r else None"
+
+lemma blexer_correctness:
+  shows "blexer r s = lexer r s"
+proof -
+  { define bds where "bds \<equiv> bders (intern r) s"
+    define ds  where "ds \<equiv> ders s r"
+    assume asm: "nullable ds"
+    have era: "erase bds = ds" 
+      unfolding ds_def bds_def by simp
+    have mke: "\<Turnstile> mkeps ds : ds"
+      using asm by (simp add: mkeps_nullable)
+    have "decode (bmkeps bds) r = decode (retrieve bds (mkeps ds)) r"
+      using bmkeps_retrieve
+      using asm era
+      using bnullable_correctness by force 
+    also have "... =  Some (flex r id s (mkeps ds))"
+      using mke by (simp_all add: MAIN_decode ds_def bds_def)
+    finally have "decode (bmkeps bds) r = Some (flex r id s (mkeps ds))" 
+      unfolding bds_def ds_def .
+  }
+  then show "blexer r s = lexer r s"
+    unfolding blexer_def lexer_flex
+    by (auto simp add: bnullable_correctness[symmetric])
+qed
+
+
+unused_thms
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys3/ClosedFormsBounds.thy	Wed Jun 29 12:38:05 2022 +0100
@@ -0,0 +1,448 @@
+
+theory ClosedFormsBounds
+  imports "GeneralRegexBound" "ClosedForms"
+begin
+lemma alts_ders_lambda_shape_ders:
+  shows "\<forall>r \<in> set (map (\<lambda>r. rders_simp r ( s)) rs ). \<exists>r1 \<in> set rs. r = rders_simp r1 s"
+  by (simp add: image_iff)
+
+lemma rlist_bound:
+  assumes "\<forall>r \<in> set rs. rsize r \<le> N"
+  shows "rsizes rs \<le> N * (length rs)"
+  using assms
+  apply(induct rs)
+  apply simp
+  by simp
+
+lemma alts_closed_form_bounded: 
+  assumes "\<forall>r \<in> set rs. \<forall>s. rsize (rders_simp r s) \<le> N"
+  shows "rsize (rders_simp (RALTS rs) s) \<le> max (Suc (N * (length rs))) (rsize (RALTS rs))"
+proof (cases s)
+  case Nil
+  then show "rsize (rders_simp (RALTS rs) s) \<le> max (Suc (N * length rs)) (rsize (RALTS rs))"
+    by simp
+next
+  case (Cons a s)
+  
+  from assms have "\<forall>r \<in> set (map (\<lambda>r. rders_simp r (a # s)) rs ). rsize r \<le> N"
+    by (metis alts_ders_lambda_shape_ders)
+  then have a: "rsizes (map (\<lambda>r. rders_simp r (a # s)) rs ) \<le> N *  (length rs)"
+    by (metis length_map rlist_bound) 
+     
+  have "rsize (rders_simp (RALTS rs) (a # s)) 
+          = rsize (rsimp (RALTS (map (\<lambda>r. rders_simp r (a # s)) rs)))"
+    by (metis alts_closed_form_variant list.distinct(1)) 
+  also have "... \<le> rsize (RALTS (map (\<lambda>r. rders_simp r (a # s)) rs))"
+    using rsimp_mono by blast
+  also have "... = Suc (rsizes (map (\<lambda>r. rders_simp r (a # s)) rs))"
+    by simp
+  also have "... \<le> Suc (N * (length rs))"
+    using a by blast
+  finally have "rsize (rders_simp (RALTS rs) (a # s)) \<le> max (Suc (N * length rs)) (rsize (RALTS rs))" 
+    by auto
+  then show ?thesis using local.Cons by simp 
+qed
+
+lemma alts_simp_ineq_unfold:
+  shows "rsize (rsimp (RALTS rs)) \<le> Suc (rsizes (rdistinct (rflts (map rsimp rs)) {}))"
+  using rsimp_aalts_smaller by auto
+
+
+lemma rdistinct_mono_list:
+  shows "rsizes (rdistinct (x5 @ rs) rset) \<le> rsizes x5 + rsizes (rdistinct  rs ((set x5 ) \<union> rset))"
+  apply(induct x5 arbitrary: rs rset)
+   apply simp
+  apply(case_tac "a \<in> rset")
+   apply simp
+   apply (simp add: add.assoc insert_absorb trans_le_add2)
+  apply simp
+  by (metis Un_insert_right)
+
+
+lemma flts_size_reduction_alts:
+  assumes a: "\<And>noalts_set alts_set corr_set.
+           (\<forall>r\<in>noalts_set. \<forall>xs. r \<noteq> RALTS xs) \<and>
+           (\<forall>a\<in>alts_set. \<exists>xs. a = RALTS xs \<and> set xs \<subseteq> corr_set) \<Longrightarrow>
+           Suc (rsizes (rdistinct (rflts rs) (noalts_set \<union> corr_set)))
+           \<le> Suc (rsizes (rdistinct rs (insert RZERO (noalts_set \<union> alts_set))))"
+ and b: "\<forall>r\<in>noalts_set. \<forall>xs. r \<noteq> RALTS xs"
+ and c: "\<forall>a\<in>alts_set. \<exists>xs. a = RALTS xs \<and> set xs \<subseteq> corr_set"
+ and d: "a = RALTS x5"
+ shows "rsizes (rdistinct (rflts (a # rs)) (noalts_set \<union> corr_set))
+           \<le> rsizes (rdistinct (a # rs) (insert RZERO (noalts_set \<union> alts_set)))"
+  
+  apply(case_tac "a \<in> alts_set")
+  using a b c d
+   apply simp
+   apply(subgoal_tac "set x5 \<subseteq> corr_set")
+  apply(subst rdistinct_concat)
+  apply auto[1]
+    apply presburger
+   apply fastforce
+  using a b c d
+  apply (subgoal_tac "a \<notin> noalts_set")
+  prefer 2
+  apply blast
+  apply simp
+  apply(subgoal_tac "rsizes (rdistinct (x5 @ rflts rs) (noalts_set \<union> corr_set)) 
+                   \<le> rsizes x5 + rsizes (rdistinct (rflts rs) ((set x5) \<union> (noalts_set \<union> corr_set)))")
+  prefer 2
+  using rdistinct_mono_list apply presburger
+  apply(subgoal_tac "insert (RALTS x5) (noalts_set \<union> alts_set) = noalts_set \<union> (insert (RALTS x5) alts_set)")
+   apply(simp only:)
+  apply(subgoal_tac "rsizes x5 + rsizes (rdistinct (rflts rs) (noalts_set \<union> (corr_set \<union> (set x5)))) \<le>
+           rsizes x5 + rsizes (rdistinct rs (insert RZERO (noalts_set \<union> insert (RALTS x5) alts_set)))")
+  
+  apply (simp add: Un_left_commute inf_sup_aci(5))
+   apply(subgoal_tac "rsizes (rdistinct (rflts rs) (noalts_set \<union> (corr_set \<union> set x5))) \<le> 
+                    rsizes (rdistinct rs (insert RZERO (noalts_set \<union> insert (RALTS x5) alts_set)))")
+    apply linarith
+   apply(subgoal_tac "\<forall>r \<in> insert (RALTS x5) alts_set. \<exists>xs1.( r = RALTS xs1 \<and> set xs1 \<subseteq> corr_set \<union> set x5)")
+    apply presburger
+   apply (meson insert_iff sup.cobounded2 sup.coboundedI1)
+  by blast
+
+
+lemma flts_vs_nflts1:
+  assumes "\<forall>r \<in> noalts_set. \<forall>xs. r \<noteq> RALTS xs"
+  and "\<forall>a \<in> alts_set. (\<exists>xs. a = RALTS xs \<and> set xs \<subseteq> corr_set)" 
+  shows "rsizes (rdistinct (rflts rs) (noalts_set \<union> corr_set))
+         \<le> rsizes (rdistinct rs (insert RZERO (noalts_set \<union> alts_set)))"
+  using assms
+    apply(induct rs arbitrary: noalts_set alts_set corr_set)
+   apply simp
+  apply(case_tac a)
+       apply(case_tac "RZERO \<in> noalts_set")
+        apply simp
+       apply(subgoal_tac "RZERO \<notin> alts_set")
+        apply simp
+       apply fastforce
+      apply(case_tac "RONE \<in> noalts_set")
+       apply simp
+      apply(subgoal_tac "RONE \<notin> alts_set")
+  prefer 2
+  apply fastforce
+      apply(case_tac "RONE \<in> corr_set")
+       apply(subgoal_tac "rflts (a # rs) = RONE # rflts rs")
+        apply(simp only:)
+        apply(subgoal_tac "rdistinct (RONE # rflts rs) (noalts_set \<union> corr_set) = 
+                           rdistinct (rflts rs) (noalts_set \<union> corr_set)")
+         apply(simp only:)
+  apply(subgoal_tac "rdistinct (RONE # rs) (insert RZERO (noalts_set \<union> alts_set)) =
+                     RONE # (rdistinct rs (insert RONE (insert RZERO (noalts_set \<union> alts_set)))) ")
+          apply(simp only:)
+  apply(subgoal_tac "rdistinct (rflts rs) (noalts_set \<union> corr_set) = 
+                     rdistinct (rflts rs) (insert RONE (noalts_set \<union> corr_set))")
+  apply (simp only:)
+  apply(subgoal_tac "insert RONE (noalts_set \<union> corr_set) = (insert RONE noalts_set) \<union> corr_set")
+            apply(simp only:)
+  apply(subgoal_tac "insert RONE (insert RZERO (noalts_set \<union> alts_set)) = 
+                     insert RZERO ((insert RONE noalts_set) \<union> alts_set)")
+             apply(simp only:)
+  apply(subgoal_tac "rsizes (rdistinct rs (insert RZERO (insert RONE noalts_set \<union> alts_set)))
+                   \<le>  rsizes (RONE # rdistinct rs (insert RZERO (insert RONE noalts_set \<union> alts_set)))")
+  apply (smt (verit, best) dual_order.trans insert_iff rrexp.distinct(15))
+  apply (metis (no_types, opaque_lifting)  le_add_same_cancel2 list.simps(9) sum_list.Cons zero_le)
+            apply fastforce
+           apply fastforce
+  apply (metis Un_iff insert_absorb)
+         apply (metis UnE insertE insert_is_Un rdistinct.simps(2) rrexp.distinct(1))
+        apply (meson UnCI rdistinct.simps(2))
+  using rflts.simps(4) apply presburger
+      apply simp
+      apply(subgoal_tac "insert RONE (noalts_set \<union> corr_set) = (insert RONE noalts_set) \<union> corr_set")
+  apply(simp only:)
+  apply (metis Un_insert_left insertE rrexp.distinct(15))
+      apply fastforce
+     apply(case_tac "a \<in> noalts_set")
+      apply simp
+  apply(subgoal_tac "a \<notin> alts_set")
+      prefer 2
+      apply blast
+  apply(case_tac "a \<in> corr_set")
+      apply(subgoal_tac "noalts_set \<union> corr_set = insert a ( noalts_set  \<union> corr_set)")
+  prefer 2
+  apply fastforce
+      apply(simp only:)
+      apply(subgoal_tac "rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set))) \<le>
+              rsizes (rdistinct (a # rs) (insert RZERO (noalts_set \<union> alts_set)))")
+
+       apply(subgoal_tac  "rsizes (rdistinct (rflts (a # rs)) ((insert a noalts_set) \<union> corr_set)) \<le>
+              rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set)))")
+  apply fastforce
+       apply simp
+  apply(subgoal_tac "(insert a (noalts_set \<union> alts_set)) = (insert a noalts_set) \<union> alts_set")
+        apply(simp only:)
+        apply(subgoal_tac "noalts_set \<union> corr_set = (insert a noalts_set) \<union> corr_set")
+  apply(simp only:)
+  apply (metis insertE rrexp.distinct(21))
+        apply blast
+  
+  apply fastforce
+  apply force
+     apply simp
+     apply (metis Un_insert_left insert_iff rrexp.distinct(21))
+    apply(case_tac "a \<in> noalts_set")
+     apply simp
+  apply(subgoal_tac "a \<notin> alts_set")
+      prefer 2
+      apply blast
+  apply(case_tac "a \<in> corr_set")
+      apply(subgoal_tac "noalts_set \<union> corr_set = insert a ( noalts_set  \<union> corr_set)")
+  prefer 2
+  apply fastforce
+      apply(simp only:)
+      apply(subgoal_tac "rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set))) \<le>
+             rsizes (rdistinct (a # rs) (insert RZERO (noalts_set \<union> alts_set)))")
+
+       apply(subgoal_tac "rsizes (rdistinct (rflts (a # rs)) ((insert a noalts_set) \<union> corr_set)) \<le>
+          rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set)))")
+  apply fastforce
+       apply simp
+  apply(subgoal_tac "(insert a (noalts_set \<union> alts_set)) = (insert a noalts_set) \<union> alts_set")
+        apply(simp only:)
+        apply(subgoal_tac "noalts_set \<union> corr_set = (insert a noalts_set) \<union> corr_set")
+  apply(simp only:)
+
+
+  apply (metis insertE rrexp.distinct(25))
+  apply blast
+  apply fastforce
+  apply force
+     apply simp
+  
+    apply (metis Un_insert_left insertE rrexp.distinct(25))
+
+  using Suc_le_mono flts_size_reduction_alts apply presburger
+     apply(case_tac "a \<in> noalts_set")
+      apply simp
+  apply(subgoal_tac "a \<notin> alts_set")
+      prefer 2
+      apply blast
+  apply(case_tac "a \<in> corr_set")
+      apply(subgoal_tac "noalts_set \<union> corr_set = insert a ( noalts_set  \<union> corr_set)")
+  prefer 2
+  apply fastforce
+      apply(simp only:)
+      apply(subgoal_tac "rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set))) \<le>
+               rsizes (rdistinct (a # rs) (insert RZERO (noalts_set \<union> alts_set)))")
+
+       apply(subgoal_tac "rsizes (rdistinct (rflts (a # rs)) ((insert a noalts_set) \<union> corr_set)) \<le>
+          rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set)))")
+  apply fastforce
+       apply simp
+  apply(subgoal_tac "(insert a (noalts_set \<union> alts_set)) = (insert a noalts_set) \<union> alts_set")
+        apply(simp only:)
+        apply(subgoal_tac "noalts_set \<union> corr_set = (insert a noalts_set) \<union> corr_set")
+  apply(simp only:)
+  apply (metis insertE rrexp.distinct(29))
+
+        apply blast
+  
+  apply fastforce
+  apply force
+     apply simp
+  apply (metis Un_insert_left insert_iff rrexp.distinct(29))
+  done
+
+
+lemma flts_vs_nflts:
+  assumes "\<forall>r \<in> noalts_set. \<forall>xs. r \<noteq> RALTS xs"
+  and "\<forall>a \<in> alts_set. (\<exists>xs. a = RALTS xs \<and> set xs \<subseteq> corr_set)"
+  shows "rsizes (rdistinct (rflts rs) (noalts_set \<union> corr_set))
+         \<le> rsizes (rdistinct rs (insert RZERO (noalts_set \<union> alts_set)))"
+  by (simp add: assms flts_vs_nflts1)
+
+lemma distinct_simp_ineq_general:
+  assumes "rsimp ` no_simp = has_simp" "finite no_simp"
+  shows "rsizes (rdistinct (map rsimp rs) has_simp) \<le> rsizes (rdistinct rs no_simp)"
+  using assms
+  apply(induct rs no_simp arbitrary: has_simp rule: rdistinct.induct)
+  apply simp
+  apply(auto)
+  using add_le_mono rsimp_mono by presburger
+
+lemma larger_acc_smaller_distinct_res0:
+  assumes "ss \<subseteq> SS"
+  shows "rsizes (rdistinct rs SS) \<le> rsizes (rdistinct rs ss)"
+  using assms
+  apply(induct rs arbitrary: ss SS)
+   apply simp
+  by (metis distinct_early_app1 rdistinct_smaller)
+
+lemma without_flts_ineq:
+  shows "rsizes (rdistinct (rflts rs) {}) \<le> rsizes (rdistinct rs {})"
+proof -
+  have "rsizes (rdistinct (rflts rs) {}) \<le>  rsizes (rdistinct rs (insert RZERO {}))"
+    by (metis empty_iff flts_vs_nflts sup_bot_left)
+  also have "... \<le>  rsizes (rdistinct rs {})" 
+    by (simp add: larger_acc_smaller_distinct_res0)
+  finally show ?thesis
+    by blast
+qed
+
+
+lemma distinct_simp_ineq:
+  shows "rsizes (rdistinct (map rsimp rs) {}) \<le> rsizes (rdistinct rs {})"
+  using distinct_simp_ineq_general by blast
+
+
+lemma alts_simp_control:
+  shows "rsize (rsimp (RALTS rs)) \<le> Suc (rsizes (rdistinct rs {}))"
+proof -
+  have "rsize (rsimp (RALTS rs)) \<le> Suc (rsizes (rdistinct (rflts (map rsimp rs)) {}))"
+     using alts_simp_ineq_unfold by auto
+   moreover have "\<dots> \<le> Suc (rsizes (rdistinct (map rsimp rs) {}))"
+    using without_flts_ineq by blast
+  ultimately show "rsize (rsimp (RALTS rs)) \<le> Suc (rsizes (rdistinct rs {}))"
+    by (meson Suc_le_mono distinct_simp_ineq le_trans)
+qed
+
+
+lemma larger_acc_smaller_distinct_res:
+  shows "rsizes (rdistinct rs (insert a ss)) \<le> rsizes (rdistinct rs ss)"
+  by (simp add: larger_acc_smaller_distinct_res0 subset_insertI)
+
+lemma triangle_inequality_distinct:
+  shows "rsizes (rdistinct (a # rs) ss) \<le> rsize a + rsizes (rdistinct rs ss)"
+  apply(case_tac "a \<in> ss")
+   apply simp
+  by (simp add: larger_acc_smaller_distinct_res)
+
+
+lemma distinct_list_size_len_bounded:
+  assumes "\<forall>r \<in> set rs. rsize r \<le> N" "length rs \<le> lrs"
+  shows "rsizes rs \<le> lrs * N "
+  using assms
+  by (metis rlist_bound dual_order.trans mult.commute mult_le_mono1)
+
+
+
+lemma rdistinct_same_set:
+  shows "r \<in> set rs \<longleftrightarrow> r \<in> set (rdistinct rs {})"
+  apply(induct rs)
+   apply simp
+  by (metis rdistinct_set_equality)
+
+(* distinct_list_rexp_up_to_certain_size_bouded_by_set_enumerating_up_to_that_size *)
+lemma distinct_list_rexp_upto:
+  assumes "\<forall>r\<in> set rs. (rsize r) \<le> N"
+  shows "rsizes (rdistinct rs {}) \<le> (card (sizeNregex N)) * N"
+  
+  apply(subgoal_tac "distinct (rdistinct rs {})")
+  prefer 2
+  using rdistinct_does_the_job apply blast
+  apply(subgoal_tac "length (rdistinct rs {}) \<le> card (sizeNregex N)")
+  apply(rule distinct_list_size_len_bounded)
+  using assms
+  apply (meson rdistinct_same_set)
+   apply blast
+  apply(subgoal_tac "\<forall>r \<in> set (rdistinct rs {}). rsize r \<le> N")
+   prefer 2
+  using assms
+   apply (meson rdistinct_same_set)
+  apply(subgoal_tac "length (rdistinct rs {}) = card (set (rdistinct rs {}))")
+   prefer 2
+  apply (simp add: distinct_card)
+  apply(simp)
+  by (metis card_mono finite_size_n mem_Collect_eq sizeNregex_def subsetI)
+
+
+lemma star_control_bounded:
+  assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
+  shows "rsizes (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r s1) (RSTAR r)) (star_updates s r [[c]])) {}) 
+     \<le> (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * (Suc (N + rsize (RSTAR r)))"
+  by (smt (verit) add_Suc_shift add_mono_thms_linordered_semiring(3) assms distinct_list_rexp_upto image_iff list.set_map plus_nat.simps(2) rsize.simps(5))
+
+
+lemma star_closed_form_bounded:
+  assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
+  shows "rsize (rders_simp (RSTAR r) s) \<le> 
+           max ((Suc (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * (Suc (N + rsize (RSTAR r))))) (rsize (RSTAR r))"
+proof(cases s)
+  case Nil
+  then show "rsize (rders_simp (RSTAR r) s)
+    \<le> max (Suc (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * Suc (N + rsize (RSTAR r))) (rsize (RSTAR r))" 
+    by simp
+next
+  case (Cons a list)
+  then have "rsize (rders_simp (RSTAR r) s) = 
+    rsize (rsimp (RALTS ((map (\<lambda>s1. RSEQ (rders_simp r s1) (RSTAR r)) (star_updates list r [[a]])))))"
+    using star_closed_form by fastforce
+  also have "... \<le> Suc (rsizes (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r s1) (RSTAR r)) (star_updates list r [[a]])) {}))"
+    using alts_simp_control by blast 
+  also have "... \<le> Suc (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * (Suc (N + rsize (RSTAR r)))" 
+    using star_control_bounded[OF assms] by (metis add_mono le_add1 mult_Suc plus_1_eq_Suc)
+  also have "... \<le> max (Suc (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * Suc (N + rsize (RSTAR r))) (rsize (RSTAR r))"
+    by simp    
+  finally show ?thesis by simp  
+qed
+
+
+lemma seq_estimate_bounded: 
+  assumes "\<forall>s. rsize (rders_simp r1 s) \<le> N1" 
+      and "\<forall>s. rsize (rders_simp r2 s) \<le> N2"
+  shows
+    "rsizes (rdistinct (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1)) {}) 
+       \<le> (Suc (N1 + (rsize r2)) + (N2 * card (sizeNregex N2)))"
+proof -
+  have a: "rsizes (rdistinct (map (rders_simp r2) (vsuf s r1)) {}) \<le> N2 * card (sizeNregex N2)"
+    by (metis assms(2) distinct_list_rexp_upto ex_map_conv mult.commute)
+
+  have "rsizes (rdistinct (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1)) {}) \<le>
+          rsize (RSEQ (rders_simp r1 s) r2) + rsizes (rdistinct (map (rders_simp r2) (vsuf s r1)) {})"
+    using triangle_inequality_distinct by blast    
+  also have "... \<le> rsize (RSEQ (rders_simp r1 s) r2) + N2 * card (sizeNregex N2)"
+    by (simp add: a)
+  also have "... \<le> Suc (N1 + (rsize r2) + N2 * card (sizeNregex N2))"
+    by (simp add: assms(1))
+  finally show ?thesis
+    by force
+qed    
+
+
+lemma seq_closed_form_bounded2: 
+  assumes "\<forall>s. rsize (rders_simp r1 s) \<le> N1"
+  and     "\<forall>s. rsize (rders_simp r2 s) \<le> N2"
+shows "rsize (rders_simp (RSEQ r1 r2) s) 
+          \<le> max (2 + N1 + (rsize r2) + (N2 * card (sizeNregex N2))) (rsize (RSEQ r1 r2))"
+proof(cases s)
+  case Nil
+  then show "rsize (rders_simp (RSEQ r1 r2) s)
+     \<le> max (2 + N1 + (rsize r2) + (N2 * card (sizeNregex N2))) (rsize (RSEQ r1 r2))" 
+    by simp
+next
+  case (Cons a list)
+  then have "rsize (rders_simp (RSEQ r1 r2) s) = 
+    rsize (rsimp (RALTS ((RSEQ (rders_simp r1 s) r2) # (map (rders_simp r2) (vsuf s r1)))))" 
+    using seq_closed_form_variant by (metis list.distinct(1)) 
+  also have "... \<le> Suc (rsizes (rdistinct (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1)) {}))"
+    using alts_simp_control by blast
+  also have "... \<le> 2 + N1 + (rsize r2) + (N2 * card (sizeNregex N2))"
+  using seq_estimate_bounded[OF assms] by auto
+  ultimately show "rsize (rders_simp (RSEQ r1 r2) s)
+       \<le> max (2 + N1 + (rsize r2) + N2 * card (sizeNregex N2)) (rsize (RSEQ r1 r2))"
+    by auto 
+qed
+
+
+lemma rders_simp_bounded: 
+  shows "\<exists>N. \<forall>s. rsize (rders_simp r s) \<le> N"
+  apply(induct r)
+  apply(rule_tac x = "Suc 0 " in exI)
+  using three_easy_cases0 apply force
+  using three_easy_cases1 apply blast
+  using three_easy_casesC apply blast
+  apply(erule exE)+
+  apply(rule exI)
+  apply(rule allI)
+  apply(rule seq_closed_form_bounded2)
+  apply(assumption)
+  apply(assumption)
+  apply (metis alts_closed_form_bounded size_list_estimation')
+  using star_closed_form_bounded by blast
+
+
+unused_thms
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys3/FBound.thy	Wed Jun 29 12:38:05 2022 +0100
@@ -0,0 +1,180 @@
+
+theory FBound
+  imports "BlexerSimp" "ClosedFormsBounds"
+begin
+
+fun distinctBy :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a list"
+  where
+  "distinctBy [] f acc = []"
+| "distinctBy (x#xs) f acc = 
+     (if (f x) \<in> acc then distinctBy xs f acc 
+      else x # (distinctBy xs f ({f x} \<union> acc)))"
+
+fun rerase :: "arexp \<Rightarrow> rrexp"
+where
+  "rerase AZERO = RZERO"
+| "rerase (AONE _) = RONE"
+| "rerase (ACHAR _ c) = RCHAR c"
+| "rerase (AALTs bs rs) = RALTS (map rerase rs)"
+| "rerase (ASEQ _ r1 r2) = RSEQ (rerase r1) (rerase r2)"
+| "rerase (ASTAR _ r) = RSTAR (rerase r)"
+
+lemma eq1_rerase:
+  shows "x ~1 y \<longleftrightarrow> (rerase x) = (rerase y)"
+  apply(induct x y rule: eq1.induct)
+  apply(auto)
+  done
+
+
+lemma distinctBy_distinctWith:
+  shows "distinctBy xs f (f ` acc) = distinctWith xs (\<lambda>x y. f x = f y) acc"
+  apply(induct xs arbitrary: acc)
+  apply(auto)
+  by (metis image_insert)
+
+lemma distinctBy_distinctWith2:
+  shows "distinctBy xs rerase {} = distinctWith xs eq1 {}"
+  apply(subst distinctBy_distinctWith[of _ _ "{}", simplified])
+  using eq1_rerase by presburger
+  
+lemma asize_rsize:
+  shows "rsize (rerase r) = asize r"
+  apply(induct r rule: rerase.induct)
+  apply(auto)
+  apply (metis (mono_tags, lifting) comp_apply map_eq_conv)
+  done
+
+lemma rerase_fuse:
+  shows "rerase (fuse bs r) = rerase r"
+  apply(induct r)
+       apply simp+
+  done
+
+lemma rerase_bsimp_ASEQ:
+  shows "rerase (bsimp_ASEQ x1 a1 a2) = rsimp_SEQ (rerase a1) (rerase a2)"
+  apply(induct x1 a1 a2 rule: bsimp_ASEQ.induct)
+  apply(auto)
+  done
+
+lemma rerase_bsimp_AALTs:
+  shows "rerase (bsimp_AALTs bs rs) = rsimp_ALTs (map rerase rs)"
+  apply(induct bs rs rule: bsimp_AALTs.induct)
+  apply(auto simp add: rerase_fuse)
+  done
+
+fun anonalt :: "arexp \<Rightarrow> bool"
+  where
+  "anonalt (AALTs bs2 rs) = False"
+| "anonalt r = True"
+
+
+fun agood :: "arexp \<Rightarrow> bool" where
+  "agood AZERO = False"
+| "agood (AONE cs) = True" 
+| "agood (ACHAR cs c) = True"
+| "agood (AALTs cs []) = False"
+| "agood (AALTs cs [r]) = False"
+| "agood (AALTs cs (r1#r2#rs)) = (distinct (map rerase (r1 # r2 # rs)) \<and>(\<forall>r' \<in> set (r1#r2#rs). agood r' \<and> anonalt r'))"
+| "agood (ASEQ _ AZERO _) = False"
+| "agood (ASEQ _ (AONE _) _) = False"
+| "agood (ASEQ _ _ AZERO) = False"
+| "agood (ASEQ cs r1 r2) = (agood r1 \<and> agood r2)"
+| "agood (ASTAR cs r) = True"
+
+
+fun anonnested :: "arexp \<Rightarrow> bool"
+  where
+  "anonnested (AALTs bs2 []) = True"
+| "anonnested (AALTs bs2 ((AALTs bs1 rs1) # rs2)) = False"
+| "anonnested (AALTs bs2 (r # rs2)) = anonnested (AALTs bs2 rs2)"
+| "anonnested r = True"
+
+
+lemma asize0:
+  shows "0 < asize r"
+  apply(induct  r)
+  apply(auto)
+  done
+
+lemma rnullable:
+  shows "rnullable (rerase r) = bnullable r"
+  apply(induct r rule: rerase.induct)
+  apply(auto)
+  done
+
+lemma rder_bder_rerase:
+  shows "rder c (rerase r ) = rerase (bder c r)"
+  apply (induct r)
+  apply (auto)
+  using rerase_fuse apply presburger
+  using rnullable apply blast
+  using rnullable by blast
+
+lemma rerase_map_bsimp:
+  assumes "\<And> r. r \<in> set rs \<Longrightarrow> rerase (bsimp r) = (rsimp \<circ> rerase) r"
+  shows "map rerase (map bsimp rs) =  map (rsimp \<circ> rerase) rs"
+  using assms
+  apply(induct rs)
+  by simp_all
+
+
+lemma rerase_flts:
+  shows "map rerase (flts rs) = rflts (map rerase rs)"
+  apply(induct rs rule: flts.induct)
+  apply(auto simp add: rerase_fuse)
+  done
+
+lemma rerase_dB:
+  shows "map rerase (distinctBy rs rerase acc) = rdistinct (map rerase rs) acc"
+  apply(induct rs arbitrary: acc)
+  apply simp+
+  done
+  
+lemma rerase_earlier_later_same:
+  assumes " \<And>r. r \<in> set rs \<Longrightarrow> rerase (bsimp r) = rsimp (rerase r)"
+  shows " (map rerase (distinctBy (flts (map bsimp rs)) rerase {})) =
+          (rdistinct (rflts (map (rsimp \<circ> rerase) rs)) {})"
+  apply(subst rerase_dB)
+  apply(subst rerase_flts)
+  apply(subst rerase_map_bsimp)
+  apply auto
+  using assms
+  apply simp
+  done
+
+lemma bsimp_rerase:
+  shows "rerase (bsimp a) = rsimp (rerase a)"
+  apply(induct a rule: bsimp.induct)
+  apply(auto)
+  using rerase_bsimp_ASEQ apply presburger
+  using distinctBy_distinctWith2 rerase_bsimp_AALTs rerase_earlier_later_same by fastforce
+
+lemma rders_simp_size:
+  shows "rders_simp (rerase r) s  = rerase (bders_simp r s)"
+  apply(induct s rule: rev_induct)
+  apply simp
+  by (simp add: bders_simp_append rder_bder_rerase rders_simp_append bsimp_rerase)
+
+
+corollary aders_simp_finiteness:
+  assumes "\<exists>N. \<forall>s. rsize (rders_simp (rerase r) s) \<le> N"
+  shows " \<exists>N. \<forall>s. asize (bders_simp r s) \<le> N"
+proof - 
+  from assms obtain N where "\<forall>s. rsize (rders_simp (rerase r) s) \<le> N"
+    by blast
+  then have "\<forall>s. rsize (rerase (bders_simp r s)) \<le> N"
+    by (simp add: rders_simp_size) 
+  then have "\<forall>s. asize (bders_simp r s) \<le> N"
+    by (simp add: asize_rsize) 
+  then show "\<exists>N. \<forall>s. asize (bders_simp r s) \<le> N" by blast
+qed
+  
+theorem annotated_size_bound:
+  shows "\<exists>N. \<forall>s. asize (bders_simp r s) \<le> N"
+  apply(insert aders_simp_finiteness)
+  by (simp add: rders_simp_bounded)
+
+
+unused_thms
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys3/GeneralRegexBound.thy	Wed Jun 29 12:38:05 2022 +0100
@@ -0,0 +1,212 @@
+theory GeneralRegexBound 
+  imports "BasicIdentities" 
+begin
+
+lemma size_geq1:
+  shows "rsize r \<ge> 1"
+  by (induct r) auto 
+
+definition RSEQ_set where
+  "RSEQ_set A n \<equiv> {RSEQ r1 r2 | r1 r2. r1 \<in> A \<and> r2 \<in> A \<and> rsize r1 + rsize r2 \<le> n}"
+
+definition RSEQ_set_cartesian where
+  "RSEQ_set_cartesian A  = {RSEQ r1 r2 | r1 r2. r1 \<in> A \<and> r2 \<in> A}"
+
+definition RALT_set where
+  "RALT_set A n \<equiv> {RALTS rs | rs. set rs \<subseteq> A \<and> rsizes rs \<le> n}"
+
+definition RALTs_set where
+  "RALTs_set A n \<equiv> {RALTS rs | rs. \<forall>r \<in> set rs. r \<in> A \<and> rsizes rs \<le> n}"
+
+definition
+  "sizeNregex N \<equiv> {r. rsize r \<le> N}"
+
+
+lemma sizenregex_induct1:
+  "sizeNregex (Suc n) = (({RZERO, RONE} \<union> {RCHAR c| c. True}) 
+                         \<union> (RSTAR ` sizeNregex n) 
+                         \<union> (RSEQ_set (sizeNregex n) n)
+                         \<union> (RALTs_set (sizeNregex n) n))"
+  apply(auto)
+        apply(case_tac x)
+             apply(auto simp add: RSEQ_set_def)
+  using sizeNregex_def apply force
+  using sizeNregex_def apply auto[1]
+  apply (simp add: sizeNregex_def)
+         apply (simp add: sizeNregex_def)
+         apply (simp add: RALTs_set_def)
+  apply (metis imageI list.set_map member_le_sum_list order_trans)
+  apply (simp add: sizeNregex_def)
+  apply (simp add: sizeNregex_def)
+  apply (simp add: sizeNregex_def)
+  using sizeNregex_def apply force
+  apply (simp add: sizeNregex_def)
+  apply (simp add: sizeNregex_def)
+  apply (simp add: RALTs_set_def)
+  apply(simp add: sizeNregex_def)
+  apply(auto)
+  using ex_in_conv by fastforce
+
+lemma s4:
+  "RSEQ_set A n \<subseteq> RSEQ_set_cartesian A"
+  using RSEQ_set_cartesian_def RSEQ_set_def by fastforce
+
+lemma s5:
+  assumes "finite A"
+  shows "finite (RSEQ_set_cartesian A)"
+  using assms
+  apply(subgoal_tac "RSEQ_set_cartesian A = (\<lambda>(x1, x2). RSEQ x1 x2) ` (A \<times> A)")
+  apply simp
+  unfolding RSEQ_set_cartesian_def
+  apply(auto)
+  done
+
+
+definition RALTs_set_length
+  where
+  "RALTs_set_length A n l \<equiv> {RALTS rs | rs. \<forall>r \<in> set rs. r \<in> A \<and> rsizes rs \<le> n \<and> length rs \<le> l}"
+
+
+definition RALTs_set_length2
+  where
+  "RALTs_set_length2 A l \<equiv> {RALTS rs | rs. \<forall>r \<in> set rs. r \<in> A \<and> length rs \<le> l}"
+
+definition set_length2
+  where
+  "set_length2 A l \<equiv> {rs. \<forall>r \<in> set rs. r \<in> A \<and> length rs \<le> l}"
+
+
+lemma r000: 
+  shows "RALTs_set_length A n l \<subseteq> RALTs_set_length2 A l"
+  apply(auto simp add: RALTs_set_length2_def RALTs_set_length_def)
+  done
+
+
+lemma r02: 
+  shows "set_length2 A 0 \<subseteq> {[]}"
+  apply(auto simp add: set_length2_def)
+  apply(case_tac x)
+  apply(auto)
+  done
+
+lemma r03:
+  shows "set_length2 A (Suc n) \<subseteq> 
+          {[]} \<union> (\<lambda>(h, t). h # t) ` (A \<times> (set_length2 A n))"
+  apply(auto simp add: set_length2_def)
+  apply(case_tac x)
+   apply(auto)
+  done
+
+lemma r1:
+  assumes "finite A" 
+  shows "finite (set_length2 A n)"
+  using assms
+  apply(induct n)
+  apply(rule finite_subset)
+    apply(rule r02)
+   apply(simp)    
+  apply(rule finite_subset)
+   apply(rule r03)
+  apply(simp)
+  done
+
+lemma size_sum_more_than_len:
+  shows "rsizes rs \<ge> length rs"
+  apply(induct rs)
+   apply simp
+  apply simp
+  apply(subgoal_tac "rsize a \<ge> 1")
+   apply linarith
+  using size_geq1 by auto
+
+
+lemma sum_list_len:
+  shows "rsizes rs \<le> n \<Longrightarrow> length rs \<le> n"
+  by (meson order.trans size_sum_more_than_len)
+
+
+lemma t2:
+  shows "RALTs_set A n \<subseteq> RALTs_set_length A n n"
+  unfolding RALTs_set_length_def RALTs_set_def
+  apply(auto)
+  using sum_list_len by blast
+
+lemma s8_aux:
+  assumes "finite A" 
+  shows "finite (RALTs_set_length A n n)"
+proof -
+  have "finite A" by fact
+  then have "finite (set_length2 A n)"
+    by (simp add: r1)
+  moreover have "(RALTS ` (set_length2 A n)) = RALTs_set_length2 A n"
+    unfolding RALTs_set_length2_def set_length2_def
+    by (auto)
+  ultimately have "finite (RALTs_set_length2 A n)"
+    by (metis finite_imageI)
+  then show ?thesis
+    by (metis infinite_super r000)
+qed
+
+lemma char_finite:
+  shows "finite  {RCHAR c |c. True}"
+  apply simp
+  apply(subgoal_tac "finite (RCHAR ` (UNIV::char set))")
+   prefer 2
+   apply simp
+  by (simp add: full_SetCompr_eq)
+
+
+lemma finite_size_n:
+  shows "finite (sizeNregex n)"
+  apply(induct n)
+   apply(simp add: sizeNregex_def)
+  apply (metis (mono_tags, lifting) not_finite_existsD not_one_le_zero size_geq1)
+  apply(subst sizenregex_induct1)
+  apply(simp only: finite_Un)
+  apply(rule conjI)+
+  apply(simp)
+  
+  using char_finite apply blast
+    apply(simp)
+   apply(rule finite_subset)
+    apply(rule s4)
+   apply(rule s5)
+   apply(simp)
+  apply(rule finite_subset)
+   apply(rule t2)
+  apply(rule s8_aux)
+  apply(simp)
+  done
+
+lemma three_easy_cases0: 
+  shows "rsize (rders_simp RZERO s) \<le> Suc 0"
+  apply(induct s)
+   apply simp
+  apply simp
+  done
+
+
+lemma three_easy_cases1: 
+  shows "rsize (rders_simp RONE s) \<le> Suc 0"
+    apply(induct s)
+   apply simp
+  apply simp
+  using three_easy_cases0 by auto
+
+
+lemma three_easy_casesC: 
+  shows "rsize (rders_simp (RCHAR c) s) \<le> Suc 0"
+  apply(induct s)
+   apply simp
+  apply simp
+  apply(case_tac " a = c")
+  using three_easy_cases1 apply blast
+  apply simp
+  using three_easy_cases0 by force
+  
+
+unused_thms
+
+
+end
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys3/HarderProps.thy	Wed Jun 29 12:38:05 2022 +0100
@@ -0,0 +1,289 @@
+theory HarderProps imports BasicIdentities
+begin
+
+
+
+
+lemma spawn_simp_rsimpalts:
+  shows "rsimp (rsimp_ALTs rs) = rsimp (rsimp_ALTs (map rsimp rs))"
+  apply(cases rs)
+   apply simp
+  apply(case_tac list)
+   apply simp
+   apply(subst rsimp_idem[symmetric])
+   apply simp
+  apply(subgoal_tac "rsimp_ALTs rs = RALTS rs")
+   apply(simp only:)
+   apply(subgoal_tac "rsimp_ALTs (map rsimp rs) = RALTS (map rsimp rs)")
+    apply(simp only:)
+  prefer 2
+  apply simp
+   prefer 2
+  using rsimp_ALTs.simps(3) apply presburger
+  apply auto
+  apply(subst rsimp_idem)+
+  by (metis comp_apply rsimp_idem)
+
+
+
+
+lemma good1_rsimpalts:
+  shows "rsimp r = RALTS rs \<Longrightarrow> rsimp_ALTs rs = RALTS rs"
+  by (metis no_alt_short_list_after_simp) 
+  
+
+
+
+lemma good1_flatten:
+  shows "\<lbrakk> rsimp r =  (RALTS rs1)\<rbrakk>
+       \<Longrightarrow> rflts (rsimp_ALTs rs1 # map rsimp rsb) = rflts (rs1 @ map rsimp rsb)"
+  apply(subst good1_rsimpalts)
+   apply simp+
+  apply(subgoal_tac "rflts (rs1 @ map rsimp rsb) = rs1 @ rflts (map rsimp rsb)")
+   apply simp
+  using flts_append rsimp_inner_idem4 by presburger
+
+  
+lemma flatten_rsimpalts:
+  shows "rflts (rsimp_ALTs (rdistinct (rflts (map rsimp rsa)) {}) # map rsimp rsb) = 
+         rflts ( (rdistinct (rflts (map rsimp rsa)) {}) @ map rsimp rsb)"
+  apply(case_tac "map rsimp rsa")
+   apply simp
+  apply(case_tac "list")
+   apply simp
+   apply(case_tac a)
+        apply simp+
+    apply(rename_tac rs1)
+    apply (metis good1_flatten map_eq_Cons_D no_further_dB_after_simp)
+  
+  apply simp
+  
+  apply(subgoal_tac "\<forall>r \<in> set( rflts (map rsimp rsa)). good r")
+   apply(case_tac "rdistinct (rflts (map rsimp rsa)) {}")
+    apply simp
+   apply(case_tac "listb")
+    apply simp+
+  apply (metis Cons_eq_appendI good1_flatten rflts.simps(3) rsimp.simps(2) rsimp_ALTs.simps(3))
+  by (metis (mono_tags, lifting) flts3 good1 image_iff list.set_map)
+
+
+
+
+
+
+lemma simp_flatten:
+  shows "rsimp (RALTS ((RALTS rsa) # rsb)) = rsimp (RALTS (rsa @ rsb))"
+  apply simp
+  apply(subst flatten_rsimpalts)
+  apply(simp add: flts_append)
+  by (metis Diff_empty distinct_once_enough flts_append nonalt0_fltseq nonalt_flts_rd qqq1 rdistinct_set_equality1)
+
+
+
+
+
+lemma simp_flatten_aux0:
+  shows "rsimp (RALTS rs) = rsimp (RALTS (map rsimp rs))"
+  apply(induct rs)
+   apply simp+
+  by (metis (mono_tags, opaque_lifting) comp_eq_dest_lhs map_eq_conv rsimp_idem)
+  
+
+
+
+
+
+lemma good_singleton:
+  shows "good a \<and> nonalt a  \<Longrightarrow> rflts [a] = [a]"
+  using good.simps(1) k0b by blast
+
+
+
+
+
+lemma good_flatten_aux_aux1:
+  shows "\<lbrakk> size rs \<ge>2; 
+\<forall>r \<in> set rs. good r \<and> r \<noteq> RZERO \<and> nonalt r; \<forall>r \<in> set rsb. good r \<and> r \<noteq> RZERO \<and> nonalt r \<rbrakk>
+       \<Longrightarrow> rdistinct (rs @ rsb) rset =
+           rdistinct (rflts [rsimp_ALTs (rdistinct rs {})] @ rsb) rset"
+  apply(induct rs arbitrary: rset)
+   apply simp
+  apply(case_tac "a \<in> rset")
+   apply simp
+   apply(case_tac "rdistinct rs {a}")
+    apply simp
+    apply(subst good_singleton)
+     apply force
+  apply simp
+    apply (meson all_that_same_elem)
+   apply(subgoal_tac "rflts [rsimp_ALTs (a # rdistinct rs {a})] = a # rdistinct rs {a} ")
+  prefer 2
+  using k0a rsimp_ALTs.simps(3) apply presburger
+  apply(simp only:)
+  apply(subgoal_tac "rdistinct (rs @ rsb) rset = rdistinct ((rdistinct (a # rs) {}) @ rsb) rset ")
+    apply (metis insert_absorb insert_is_Un insert_not_empty rdistinct.simps(2))
+   apply (meson distinct_eq_interesting1)
+  apply simp
+  apply(case_tac "rdistinct rs {a}")
+  prefer 2
+   apply(subgoal_tac "rsimp_ALTs (a # rdistinct rs {a}) = RALTS (a # rdistinct rs {a})")
+  apply(simp only:)
+  apply(subgoal_tac "a # rdistinct (rs @ rsb) (insert a rset) =
+           rdistinct (rflts [RALTS (a # rdistinct rs {a})] @ rsb) rset")
+   apply simp
+  apply (metis append_Cons distinct_early_app empty_iff insert_is_Un k0a rdistinct.simps(2))
+  using rsimp_ALTs.simps(3) apply presburger
+  by (metis Un_insert_left append_Cons distinct_early_app empty_iff good_singleton rdistinct.simps(2) rsimp_ALTs.simps(2) sup_bot_left)
+
+
+
+  
+
+lemma good_flatten_aux_aux:
+  shows "\<lbrakk>\<exists>a aa lista list. rs = a # list \<and> list = aa # lista; 
+\<forall>r \<in> set rs. good r \<and> r \<noteq> RZERO \<and> nonalt r; \<forall>r \<in> set rsb. good r \<and> r \<noteq> RZERO \<and> nonalt r \<rbrakk>
+       \<Longrightarrow> rdistinct (rs @ rsb) rset =
+           rdistinct (rflts [rsimp_ALTs (rdistinct rs {})] @ rsb) rset"
+  apply(erule exE)+
+  apply(subgoal_tac "size rs \<ge> 2")
+   apply (metis good_flatten_aux_aux1)
+  by (simp add: Suc_leI length_Cons less_add_Suc1)
+
+
+
+lemma good_flatten_aux:
+  shows " \<lbrakk>\<forall>r\<in>set rs. good r \<or> r = RZERO; \<forall>r\<in>set rsa . good r \<or> r = RZERO; 
+           \<forall>r\<in>set rsb. good r \<or> r = RZERO;
+     rsimp (RALTS (rsa @ rs @ rsb)) = rsimp_ALTs (rdistinct (rflts (rsa @ rs @ rsb)) {});
+     rsimp (RALTS (rsa @ [RALTS rs] @ rsb)) =
+     rsimp_ALTs (rdistinct (rflts (rsa @ [rsimp (RALTS rs)] @ rsb)) {});
+     map rsimp rsa = rsa; 
+     map rsimp rsb = rsb; 
+     map rsimp rs = rs;
+     rdistinct (rflts rsa @ rflts rs @ rflts rsb) {} =
+     rdistinct (rflts rsa) {} @ rdistinct (rflts rs @ rflts rsb) (set (rflts rsa));
+     rdistinct (rflts rsa @ rflts [rsimp (RALTS rs)] @ rflts rsb) {} =
+     rdistinct (rflts rsa) {} @ rdistinct (rflts [rsimp (RALTS rs)] @ rflts rsb) (set (rflts rsa))\<rbrakk>
+    \<Longrightarrow>    rdistinct (rflts rs @ rflts rsb) rset =
+           rdistinct (rflts [rsimp (RALTS rs)] @ rflts rsb) rset"
+  apply simp
+  apply(case_tac "rflts rs ")
+   apply simp
+  apply(case_tac "list")
+   apply simp
+   apply(case_tac "a \<in> rset")
+    apply simp
+  apply (metis append.left_neutral append_Cons equals0D k0b list.set_intros(1) nonalt_flts_rd qqq1 rdistinct.simps(2))
+   apply simp
+  apply (metis Un_insert_left append_Cons append_Nil ex_in_conv flts_single1 insertI1 list.simps(15) nonalt_flts_rd nonazero.elims(3) qqq1 rdistinct.simps(2) sup_bot_left)
+  apply(subgoal_tac "\<forall>r \<in> set (rflts rs). good r \<and> r \<noteq> RZERO \<and> nonalt r")
+   prefer 2
+  apply (metis Diff_empty flts3 nonalt_flts_rd qqq1 rdistinct_set_equality1)  
+  apply(subgoal_tac "\<forall>r \<in> set (rflts rsb). good r \<and> r \<noteq> RZERO \<and> nonalt r")
+   prefer 2
+  apply (metis Diff_empty flts3 good.simps(1) nonalt_flts_rd rdistinct_set_equality1)  
+  by (smt (verit, ccfv_threshold) good_flatten_aux_aux)
+
+  
+
+
+lemma good_flatten_middle:
+  shows "\<lbrakk>\<forall>r \<in> set rs. good r \<or> r = RZERO; 
+          \<forall>r \<in> set rsa. good r \<or> r = RZERO; 
+          \<forall>r \<in> set rsb. good r \<or> r = RZERO\<rbrakk> \<Longrightarrow>
+rsimp (RALTS (rsa @ rs @ rsb)) = 
+rsimp (RALTS (rsa @ [RALTS rs] @ rsb))"
+  apply(subgoal_tac "rsimp (RALTS (rsa @ rs @ rsb)) = rsimp_ALTs (rdistinct (rflts (map rsimp rsa @ 
+map rsimp rs @ map rsimp rsb)) {})")
+  prefer 2
+  apply simp
+  apply(simp only:)
+    apply(subgoal_tac "rsimp (RALTS (rsa @ [RALTS rs] @ rsb)) = rsimp_ALTs (rdistinct (rflts (map rsimp rsa @ 
+[rsimp (RALTS rs)] @ map rsimp rsb)) {})")
+  prefer 2
+   apply simp
+  apply(simp only:)
+  apply(subgoal_tac "map rsimp rsa = rsa")
+  prefer 2
+  apply (metis map_idI rsimp.simps(3) test)
+  apply(simp only:)
+  apply(subgoal_tac "map rsimp rsb = rsb")
+   prefer 2
+  apply (metis map_idI rsimp.simps(3) test)
+  apply(simp only:)
+  apply(subst flts_append)+
+  apply(subgoal_tac "map rsimp rs = rs")
+   apply(simp only:)
+   prefer 2
+  apply (metis map_idI rsimp.simps(3) test)
+  apply(subgoal_tac "rdistinct (rflts rsa @ rflts rs @ rflts rsb) {} = 
+rdistinct (rflts rsa) {} @ rdistinct  (rflts rs @ rflts rsb) (set (rflts rsa))")
+   apply(simp only:)
+  prefer 2
+  using rdistinct_concat_general apply blast
+  apply(subgoal_tac "rdistinct (rflts rsa @ rflts [rsimp (RALTS rs)] @ rflts rsb) {} = 
+rdistinct (rflts rsa) {} @ rdistinct  (rflts [rsimp (RALTS rs)] @ rflts rsb) (set (rflts rsa))")
+   apply(simp only:)
+  prefer 2
+  using rdistinct_concat_general apply blast
+  apply(subgoal_tac "rdistinct (rflts rs @ rflts rsb) (set (rflts rsa)) = 
+                     rdistinct  (rflts [rsimp (RALTS rs)] @ rflts rsb) (set (rflts rsa))")
+   apply presburger
+  using good_flatten_aux by blast
+
+
+
+lemma simp_flatten3:
+  shows "rsimp (RALTS (rsa @ [RALTS rs ] @ rsb)) = rsimp (RALTS (rsa @ rs @ rsb))"
+  apply(subgoal_tac "rsimp (RALTS (rsa @ [RALTS rs] @ rsb)) = 
+                     rsimp (RALTS (map rsimp rsa @ [rsimp (RALTS rs)] @ map rsimp rsb)) ")
+  prefer 2
+   apply (metis append.left_neutral append_Cons list.simps(9) map_append simp_flatten_aux0)
+  apply (simp only:)
+  apply(subgoal_tac "rsimp (RALTS (rsa @ rs @ rsb)) = 
+rsimp (RALTS (map rsimp rsa @ map rsimp rs @ map rsimp rsb))")
+  prefer 2
+   apply (metis map_append simp_flatten_aux0)
+  apply(simp only:)
+  apply(subgoal_tac "rsimp  (RALTS (map rsimp rsa @ map rsimp rs @ map rsimp rsb)) =
+ rsimp (RALTS (map rsimp rsa @ [RALTS (map rsimp rs)] @ map rsimp rsb))")
+  
+   apply (metis (no_types, lifting) head_one_more_simp map_append simp_flatten_aux0)
+  apply(subgoal_tac "\<forall>r \<in> set (map rsimp rsa). good r \<or> r = RZERO")
+   apply(subgoal_tac "\<forall>r \<in> set (map rsimp rs). good r \<or> r = RZERO")
+    apply(subgoal_tac "\<forall>r \<in> set (map rsimp rsb). good r \<or> r = RZERO")
+  
+  using good_flatten_middle apply presburger
+  apply (simp add: good1)
+  apply (simp add: good1)
+  apply (simp add: good1)
+  done
+
+
+lemma simp_removes_duplicate1:
+  shows  " a \<in> set rsa \<Longrightarrow> rsimp (RALTS (rsa @ [a])) =  rsimp (RALTS (rsa))"
+and " rsimp (RALTS (a1 # rsa @ [a1])) = rsimp (RALTS (a1 # rsa))"
+  apply(induct rsa arbitrary: a1)
+     apply simp
+    apply simp
+  prefer 2
+  apply(case_tac "a = aa")
+     apply simp
+    apply simp
+  apply (metis Cons_eq_appendI Cons_eq_map_conv distinct_removes_duplicate_flts list.set_intros(2))
+  apply (metis append_Cons append_Nil distinct_removes_duplicate_flts list.set_intros(1) list.simps(8) list.simps(9))
+  by (metis (mono_tags, lifting) append_Cons distinct_removes_duplicate_flts list.set_intros(1) list.simps(8) list.simps(9) map_append rsimp.simps(2))
+
+lemma simp_removes_duplicate2:
+  shows "a \<in> set rsa \<Longrightarrow> rsimp (RALTS (rsa @ [a] @ rsb)) = rsimp (RALTS (rsa @ rsb))"
+  apply(induct rsb arbitrary: rsa)
+   apply simp
+  using distinct_removes_duplicate_flts apply auto[1]
+  by (metis append.assoc head_one_more_simp rsimp.simps(2) simp_flatten simp_removes_duplicate1(1))
+
+lemma simp_removes_duplicate3:
+  shows "a \<in> set rsa \<Longrightarrow> rsimp (RALTS (rsa @ a # rsb)) = rsimp (RALTS (rsa @ rsb))"
+  using simp_removes_duplicate2 by auto
+
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys3/Lexer.thy	Wed Jun 29 12:38:05 2022 +0100
@@ -0,0 +1,417 @@
+   
+theory Lexer
+  imports PosixSpec 
+begin
+
+section {* The Lexer Functions by Sulzmann and Lu  (without simplification) *}
+
+fun 
+  mkeps :: "rexp \<Rightarrow> val"
+where
+  "mkeps(ONE) = Void"
+| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)"
+| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))"
+| "mkeps(STAR r) = Stars []"
+
+fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val"
+where
+  "injval (CH d) c Void = Char d"
+| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)"
+| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)"
+| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2"
+| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2"
+| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)"
+| "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 
+
+fun 
+  lexer :: "rexp \<Rightarrow> string \<Rightarrow> val option"
+where
+  "lexer r [] = (if nullable r then Some(mkeps r) else None)"
+| "lexer r (c#s) = (case (lexer (der c r) s) of  
+                    None \<Rightarrow> None
+                  | Some(v) \<Rightarrow> Some(injval r c v))"
+
+
+
+section {* Mkeps, Injval Properties *}
+
+lemma mkeps_nullable:
+  assumes "nullable(r)" 
+  shows "\<Turnstile> mkeps r : r"
+using assms
+by (induct rule: nullable.induct) 
+   (auto intro: Prf.intros)
+
+lemma mkeps_flat:
+  assumes "nullable(r)" 
+  shows "flat (mkeps r) = []"
+using assms
+by (induct rule: nullable.induct) (auto)
+
+lemma Prf_injval_flat:
+  assumes "\<Turnstile> v : der c r" 
+  shows "flat (injval r c v) = c # (flat v)"
+using assms
+apply(induct c r arbitrary: v rule: der.induct)
+apply(auto elim!: Prf_elims intro: mkeps_flat split: if_splits)
+done
+
+lemma Prf_injval:
+  assumes "\<Turnstile> v : der c r" 
+  shows "\<Turnstile> (injval r c v) : r"
+using assms
+apply(induct r arbitrary: c v rule: rexp.induct)
+apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits)
+apply(simp add: Prf_injval_flat)
+done
+
+
+
+text {*
+  Mkeps and injval produce, or preserve, Posix values.
+*}
+
+lemma Posix_mkeps:
+  assumes "nullable r"
+  shows "[] \<in> r \<rightarrow> mkeps r"
+using assms
+apply(induct r rule: nullable.induct)
+apply(auto intro: Posix.intros simp add: nullable_correctness Sequ_def)
+apply(subst append.simps(1)[symmetric])
+apply(rule Posix.intros)
+apply(auto)
+done
+
+lemma Posix_injval:
+  assumes "s \<in> (der c r) \<rightarrow> v"
+  shows "(c # s) \<in> r \<rightarrow> (injval r c v)"
+using assms
+proof(induct r arbitrary: s v rule: rexp.induct)
+  case ZERO
+  have "s \<in> der c ZERO \<rightarrow> v" by fact
+  then have "s \<in> ZERO \<rightarrow> v" by simp
+  then have "False" by cases
+  then show "(c # s) \<in> ZERO \<rightarrow> (injval ZERO c v)" by simp
+next
+  case ONE
+  have "s \<in> der c ONE \<rightarrow> v" by fact
+  then have "s \<in> ZERO \<rightarrow> v" by simp
+  then have "False" by cases
+  then show "(c # s) \<in> ONE \<rightarrow> (injval ONE c v)" by simp
+next 
+  case (CH d)
+  consider (eq) "c = d" | (ineq) "c \<noteq> d" by blast
+  then show "(c # s) \<in> (CH d) \<rightarrow> (injval (CH d) c v)"
+  proof (cases)
+    case eq
+    have "s \<in> der c (CH d) \<rightarrow> v" by fact
+    then have "s \<in> ONE \<rightarrow> v" using eq by simp
+    then have eqs: "s = [] \<and> v = Void" by cases simp
+    show "(c # s) \<in> CH d \<rightarrow> injval (CH d) c v" using eq eqs 
+    by (auto intro: Posix.intros)
+  next
+    case ineq
+    have "s \<in> der c (CH d) \<rightarrow> v" by fact
+    then have "s \<in> ZERO \<rightarrow> v" using ineq by simp
+    then have "False" by cases
+    then show "(c # s) \<in> CH d \<rightarrow> injval (CH d) c v" by simp
+  qed
+next
+  case (ALT r1 r2)
+  have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
+  have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
+  have "s \<in> der c (ALT r1 r2) \<rightarrow> v" by fact
+  then have "s \<in> ALT (der c r1) (der c r2) \<rightarrow> v" by simp
+  then consider (left) v' where "v = Left v'" "s \<in> der c r1 \<rightarrow> v'" 
+              | (right) v' where "v = Right v'" "s \<notin> L (der c r1)" "s \<in> der c r2 \<rightarrow> v'" 
+              by cases auto
+  then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v"
+  proof (cases)
+    case left
+    have "s \<in> der c r1 \<rightarrow> v'" by fact
+    then have "(c # s) \<in> r1 \<rightarrow> injval r1 c v'" using IH1 by simp
+    then have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Left v')" by (auto intro: Posix.intros)
+    then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using left by simp
+  next 
+    case right
+    have "s \<notin> L (der c r1)" by fact
+    then have "c # s \<notin> L r1" by (simp add: der_correctness Der_def)
+    moreover 
+    have "s \<in> der c r2 \<rightarrow> v'" by fact
+    then have "(c # s) \<in> r2 \<rightarrow> injval r2 c v'" using IH2 by simp
+    ultimately have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Right v')" 
+      by (auto intro: Posix.intros)
+    then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using right by simp
+  qed
+next
+  case (SEQ r1 r2)
+  have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
+  have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
+  have "s \<in> der c (SEQ r1 r2) \<rightarrow> v" by fact
+  then consider 
+        (left_nullable) v1 v2 s1 s2 where 
+        "v = Left (Seq v1 v2)"  "s = s1 @ s2" 
+        "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "nullable r1" 
+        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
+      | (right_nullable) v1 s1 s2 where 
+        "v = Right v1" "s = s1 @ s2"  
+        "s \<in> der c r2 \<rightarrow> v1" "nullable r1" "s1 @ s2 \<notin> L (SEQ (der c r1) r2)"
+      | (not_nullable) v1 v2 s1 s2 where
+        "v = Seq v1 v2" "s = s1 @ s2" 
+        "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "\<not>nullable r1" 
+        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
+        by (force split: if_splits elim!: Posix_elims simp add: Sequ_def der_correctness Der_def)   
+  then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" 
+    proof (cases)
+      case left_nullable
+      have "s1 \<in> der c r1 \<rightarrow> v1" by fact
+      then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
+      moreover
+      have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
+      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
+      ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using left_nullable by (rule_tac Posix.intros)
+      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using left_nullable by simp
+    next
+      case right_nullable
+      have "nullable r1" by fact
+      then have "[] \<in> r1 \<rightarrow> (mkeps r1)" by (rule Posix_mkeps)
+      moreover
+      have "s \<in> der c r2 \<rightarrow> v1" by fact
+      then have "(c # s) \<in> r2 \<rightarrow> (injval r2 c v1)" using IH2 by simp
+      moreover
+      have "s1 @ s2 \<notin> L (SEQ (der c r1) r2)" by fact
+      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = c # s \<and> [] @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" using right_nullable
+        by(auto simp add: der_correctness Der_def append_eq_Cons_conv Sequ_def)
+      ultimately have "([] @ (c # s)) \<in> SEQ r1 r2 \<rightarrow> Seq (mkeps r1) (injval r2 c v1)"
+      by(rule Posix.intros)
+      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using right_nullable by simp
+    next
+      case not_nullable
+      have "s1 \<in> der c r1 \<rightarrow> v1" by fact
+      then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
+      moreover
+      have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
+      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
+      ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using not_nullable 
+        by (rule_tac Posix.intros) (simp_all) 
+      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using not_nullable by simp
+    qed
+next
+  case (STAR r)
+  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
+  have "s \<in> der c (STAR r) \<rightarrow> v" by fact
+  then consider
+      (cons) v1 vs s1 s2 where 
+        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
+        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (STAR r) \<rightarrow> (Stars vs)"
+        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" 
+        apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
+        apply(rotate_tac 3)
+        apply(erule_tac Posix_elims(6))
+        apply (simp add: Posix.intros(6))
+        using Posix.intros(7) by blast
+    then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" 
+    proof (cases)
+      case cons
+          have "s1 \<in> der c r \<rightarrow> v1" by fact
+          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
+        moreover
+          have "s2 \<in> STAR r \<rightarrow> Stars vs" by fact
+        moreover 
+          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
+          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
+          then have "flat (injval r c v1) \<noteq> []" by simp
+        moreover 
+          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" by fact
+          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" 
+            by (simp add: der_correctness Der_def)
+        ultimately 
+        have "((c # s1) @ s2) \<in> STAR r \<rightarrow> Stars (injval r c v1 # vs)" by (rule Posix.intros)
+        then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" using cons by(simp)
+    qed
+qed
+
+
+section {* Lexer Correctness *}
+
+
+lemma lexer_correct_None:
+  shows "s \<notin> L r \<longleftrightarrow> lexer r s = None"
+  apply(induct s arbitrary: r)
+  apply(simp)
+  apply(simp add: nullable_correctness)
+  apply(simp)
+  apply(drule_tac x="der a r" in meta_spec) 
+  apply(auto)
+  apply(auto simp add: der_correctness Der_def)
+done
+
+lemma lexer_correct_Some:
+  shows "s \<in> L r \<longleftrightarrow> (\<exists>v. lexer r s = Some(v) \<and> s \<in> r \<rightarrow> v)"
+  apply(induct s arbitrary : r)
+  apply(simp only: lexer.simps)
+  apply(simp)
+  apply(simp add: nullable_correctness Posix_mkeps)
+  apply(drule_tac x="der a r" in meta_spec)
+  apply(simp (no_asm_use) add: der_correctness Der_def del: lexer.simps) 
+  apply(simp del: lexer.simps)
+  apply(simp only: lexer.simps)
+  apply(case_tac "lexer (der a r) s = None")
+   apply(auto)[1]
+  apply(simp)
+  apply(erule exE)
+  apply(simp)
+  apply(rule iffI)
+  apply(simp add: Posix_injval)
+  apply(simp add: Posix1(1))
+done 
+
+lemma lexer_correctness:
+  shows "(lexer r s = Some v) \<longleftrightarrow> s \<in> r \<rightarrow> v"
+  and   "(lexer r s = None) \<longleftrightarrow> \<not>(\<exists>v. s \<in> r \<rightarrow> v)"
+using Posix1(1) Posix_determ lexer_correct_None lexer_correct_Some apply fastforce
+using Posix1(1) lexer_correct_None lexer_correct_Some by blast
+
+
+subsection {* A slight reformulation of the lexer algorithm using stacked functions*}
+
+fun flex :: "rexp \<Rightarrow> (val \<Rightarrow> val) => string \<Rightarrow> (val \<Rightarrow> val)"
+  where
+  "flex r f [] = f"
+| "flex r f (c#s) = flex (der c r) (\<lambda>v. f (injval r c v)) s"  
+
+lemma flex_fun_apply:
+  shows "g (flex r f s v) = flex r (g o f) s v"
+  apply(induct s arbitrary: g f r v)
+  apply(simp_all add: comp_def)
+  by meson
+
+lemma flex_fun_apply2:
+  shows "g (flex r id s v) = flex r g s v"
+  by (simp add: flex_fun_apply)
+
+
+lemma flex_append:
+  shows "flex r f (s1 @ s2) = flex (ders s1 r) (flex r f s1) s2"
+  apply(induct s1 arbitrary: s2 r f)
+  apply(simp_all)
+  done  
+
+lemma lexer_flex:
+  shows "lexer r s = (if nullable (ders s r) 
+                      then Some(flex r id s (mkeps (ders s r))) else None)"
+  apply(induct s arbitrary: r)
+  apply(simp_all add: flex_fun_apply)
+  done  
+
+lemma Posix_flex:
+  assumes "s2 \<in> (ders s1 r) \<rightarrow> v"
+  shows "(s1 @ s2) \<in> r \<rightarrow> flex r id s1 v"
+  using assms
+  apply(induct s1 arbitrary: r v s2)
+  apply(simp)
+  apply(simp)  
+  apply(drule_tac x="der a r" in meta_spec)
+  apply(drule_tac x="v" in meta_spec)
+  apply(drule_tac x="s2" in meta_spec)
+  apply(simp)
+  using  Posix_injval
+  apply(drule_tac Posix_injval)
+  apply(subst (asm) (5) flex_fun_apply)
+  apply(simp)
+  done
+
+lemma injval_inj:
+  assumes "\<Turnstile> a : (der c r)" "\<Turnstile> v : (der c r)" "injval r c a = injval r c v" 
+  shows "a = v"
+  using  assms
+  apply(induct r arbitrary: a c v)
+       apply(auto)
+  using Prf_elims(1) apply blast
+  using Prf_elims(1) apply blast
+     apply(case_tac "c = x")
+      apply(auto)
+  using Prf_elims(4) apply auto[1]
+  using Prf_elims(1) apply blast
+    prefer 2
+  apply (smt Prf_elims(3) injval.simps(2) injval.simps(3) val.distinct(25) val.inject(3) val.inject(4))
+  apply(case_tac "nullable r1")
+    apply(auto)
+    apply(erule Prf_elims)
+     apply(erule Prf_elims)
+     apply(erule Prf_elims)
+      apply(erule Prf_elims)
+      apply(auto)
+     apply (metis Prf_injval_flat list.distinct(1) mkeps_flat)
+  apply(erule Prf_elims)
+     apply(erule Prf_elims)
+  apply(auto)
+  using Prf_injval_flat mkeps_flat apply fastforce
+  apply(erule Prf_elims)
+     apply(erule Prf_elims)
+   apply(auto)
+  apply(erule Prf_elims)
+     apply(erule Prf_elims)
+  apply(auto)
+   apply (smt Prf_elims(6) injval.simps(7) list.inject val.inject(5))
+  by (smt Prf_elims(6) injval.simps(7) list.inject val.inject(5))
+  
+  
+
+lemma uu:
+  assumes "(c # s) \<in> r \<rightarrow> injval r c v" "\<Turnstile> v : (der c r)"
+  shows "s \<in> der c r \<rightarrow> v"
+  using assms
+  apply -
+  apply(subgoal_tac "lexer r (c # s) = Some (injval r c v)")
+  prefer 2
+  using lexer_correctness(1) apply blast
+  apply(simp add: )
+  apply(case_tac  "lexer (der c r) s")
+   apply(simp)
+  apply(simp)
+  apply(case_tac "s \<in> der c r \<rightarrow> a")
+   prefer 2
+   apply (simp add: lexer_correctness(1))
+  apply(subgoal_tac "\<Turnstile> a : (der c r)")
+   prefer 2
+  using Posix_Prf apply blast
+  using injval_inj by blast
+  
+
+lemma Posix_flex2:
+  assumes "(s1 @ s2) \<in> r \<rightarrow> flex r id s1 v" "\<Turnstile> v : ders s1 r"
+  shows "s2 \<in> (ders s1 r) \<rightarrow> v"
+  using assms
+  apply(induct s1 arbitrary: r v s2 rule: rev_induct)
+  apply(simp)
+  apply(simp)  
+  apply(drule_tac x="r" in meta_spec)
+  apply(drule_tac x="injval (ders xs r) x v" in meta_spec)
+  apply(drule_tac x="x#s2" in meta_spec)
+  apply(simp add: flex_append ders_append)
+  using Prf_injval uu by blast
+
+lemma Posix_flex3:
+  assumes "s1 \<in> r \<rightarrow> flex r id s1 v" "\<Turnstile> v : ders s1 r"
+  shows "[] \<in> (ders s1 r) \<rightarrow> v"
+  using assms
+  by (simp add: Posix_flex2)
+
+lemma flex_injval:
+  shows "flex (der a r) (injval r a) s v = injval r a (flex (der a r) id s v)"
+  by (simp add: flex_fun_apply)
+  
+lemma Prf_flex:
+  assumes "\<Turnstile> v : ders s r"
+  shows "\<Turnstile> flex r id s v : r"
+  using assms
+  apply(induct s arbitrary: v r)
+  apply(simp)
+  apply(simp)
+  by (simp add: Prf_injval flex_injval)
+
+
+unused_thms
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys3/LexerSimp.thy	Wed Jun 29 12:38:05 2022 +0100
@@ -0,0 +1,246 @@
+theory LexerSimp
+  imports "Lexer" 
+begin
+
+section {* Lexer including some simplifications *}
+
+
+fun F_RIGHT where
+  "F_RIGHT f v = Right (f v)"
+
+fun F_LEFT where
+  "F_LEFT f v = Left (f v)"
+
+fun F_ALT where
+  "F_ALT f\<^sub>1 f\<^sub>2 (Right v) = Right (f\<^sub>2 v)"
+| "F_ALT f\<^sub>1 f\<^sub>2 (Left v) = Left (f\<^sub>1 v)"  
+| "F_ALT f1 f2 v = v"
+
+
+fun F_SEQ1 where
+  "F_SEQ1 f\<^sub>1 f\<^sub>2 v = Seq (f\<^sub>1 Void) (f\<^sub>2 v)"
+
+fun F_SEQ2 where 
+  "F_SEQ2 f\<^sub>1 f\<^sub>2 v = Seq (f\<^sub>1 v) (f\<^sub>2 Void)"
+
+fun F_SEQ where 
+  "F_SEQ f\<^sub>1 f\<^sub>2 (Seq v\<^sub>1 v\<^sub>2) = Seq (f\<^sub>1 v\<^sub>1) (f\<^sub>2 v\<^sub>2)"
+| "F_SEQ f1 f2 v = v"
+
+fun simp_ALT where
+  "simp_ALT (ZERO, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (r\<^sub>2, F_RIGHT f\<^sub>2)"
+| "simp_ALT (r\<^sub>1, f\<^sub>1) (ZERO, f\<^sub>2) = (r\<^sub>1, F_LEFT f\<^sub>1)"
+| "simp_ALT (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (ALT r\<^sub>1 r\<^sub>2, F_ALT f\<^sub>1 f\<^sub>2)"
+
+
+fun simp_SEQ where
+  "simp_SEQ (ONE, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (r\<^sub>2, F_SEQ1 f\<^sub>1 f\<^sub>2)"
+| "simp_SEQ (r\<^sub>1, f\<^sub>1) (ONE, f\<^sub>2) = (r\<^sub>1, F_SEQ2 f\<^sub>1 f\<^sub>2)"
+| "simp_SEQ (ZERO, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (ZERO, undefined)"
+| "simp_SEQ (r\<^sub>1, f\<^sub>1) (ZERO, f\<^sub>2) = (ZERO, undefined)"
+| "simp_SEQ (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (SEQ r\<^sub>1 r\<^sub>2, F_SEQ f\<^sub>1 f\<^sub>2)"  
+ 
+lemma simp_SEQ_simps[simp]:
+  "simp_SEQ p1 p2 = (if (fst p1 = ONE) then (fst p2, F_SEQ1 (snd p1) (snd p2))
+                    else (if (fst p2 = ONE) then (fst p1, F_SEQ2 (snd p1) (snd p2))
+                    else (if (fst p1 = ZERO) then (ZERO, undefined)         
+                    else (if (fst p2 = ZERO) then (ZERO, undefined)  
+                    else (SEQ (fst p1) (fst p2), F_SEQ (snd p1) (snd p2))))))"
+by (induct p1 p2 rule: simp_SEQ.induct) (auto)
+
+lemma simp_ALT_simps[simp]:
+  "simp_ALT p1 p2 = (if (fst p1 = ZERO) then (fst p2, F_RIGHT (snd p2))
+                    else (if (fst p2 = ZERO) then (fst p1, F_LEFT (snd p1))
+                    else (ALT (fst p1) (fst p2), F_ALT (snd p1) (snd p2))))"
+by (induct p1 p2 rule: simp_ALT.induct) (auto)
+
+fun 
+  simp :: "rexp \<Rightarrow> rexp * (val \<Rightarrow> val)"
+where
+  "simp (ALT r1 r2) = simp_ALT (simp r1) (simp r2)" 
+| "simp (SEQ r1 r2) = simp_SEQ (simp r1) (simp r2)" 
+| "simp r = (r, id)"
+
+fun 
+  slexer :: "rexp \<Rightarrow> string \<Rightarrow> val option"
+where
+  "slexer r [] = (if nullable r then Some(mkeps r) else None)"
+| "slexer r (c#s) = (let (rs, fr) = simp (der c r) in
+                         (case (slexer rs s) of  
+                            None \<Rightarrow> None
+                          | Some(v) \<Rightarrow> Some(injval r c (fr v))))"
+
+
+lemma slexer_better_simp:
+  "slexer r (c#s) = (case (slexer (fst (simp (der c r))) s) of  
+                            None \<Rightarrow> None
+                          | Some(v) \<Rightarrow> Some(injval r c ((snd (simp (der c r))) v)))"
+by (auto split: prod.split option.split)
+
+
+lemma L_fst_simp:
+  shows "L(r) = L(fst (simp r))"
+by (induct r) (auto)
+
+lemma Posix_simp:
+  assumes "s \<in> (fst (simp r)) \<rightarrow> v" 
+  shows "s \<in> r \<rightarrow> ((snd (simp r)) v)"
+using assms
+proof(induct r arbitrary: s v rule: rexp.induct)
+  case (ALT r1 r2 s v)
+  have IH1: "\<And>s v. s \<in> fst (simp r1) \<rightarrow> v \<Longrightarrow> s \<in> r1 \<rightarrow> snd (simp r1) v" by fact
+  have IH2: "\<And>s v. s \<in> fst (simp r2) \<rightarrow> v \<Longrightarrow> s \<in> r2 \<rightarrow> snd (simp r2) v" by fact
+  have as: "s \<in> fst (simp (ALT r1 r2)) \<rightarrow> v" by fact
+  consider (ZERO_ZERO) "fst (simp r1) = ZERO" "fst (simp r2) = ZERO"
+         | (ZERO_NZERO) "fst (simp r1) = ZERO" "fst (simp r2) \<noteq> ZERO"
+         | (NZERO_ZERO) "fst (simp r1) \<noteq> ZERO" "fst (simp r2) = ZERO"
+         | (NZERO_NZERO) "fst (simp r1) \<noteq> ZERO" "fst (simp r2) \<noteq> ZERO" by auto
+  then show "s \<in> ALT r1 r2 \<rightarrow> snd (simp (ALT r1 r2)) v" 
+    proof(cases)
+      case (ZERO_ZERO)
+      with as have "s \<in> ZERO \<rightarrow> v" by simp 
+      then show "s \<in> ALT r1 r2 \<rightarrow> snd (simp (ALT r1 r2)) v" by (rule Posix_elims(1))
+    next
+      case (ZERO_NZERO)
+      with as have "s \<in> fst (simp r2) \<rightarrow> v" by simp
+      with IH2 have "s \<in> r2 \<rightarrow> snd (simp r2) v" by simp
+      moreover
+      from ZERO_NZERO have "fst (simp r1) = ZERO" by simp
+      then have "L (fst (simp r1)) = {}" by simp
+      then have "L r1 = {}" using L_fst_simp by simp
+      then have "s \<notin> L r1" by simp 
+      ultimately have "s \<in> ALT r1 r2 \<rightarrow> Right (snd (simp r2) v)" by (rule Posix_ALT2)
+      then show "s \<in> ALT r1 r2 \<rightarrow> snd (simp (ALT r1 r2)) v"
+      using ZERO_NZERO by simp
+    next
+      case (NZERO_ZERO)
+      with as have "s \<in> fst (simp r1) \<rightarrow> v" by simp
+      with IH1 have "s \<in> r1 \<rightarrow> snd (simp r1) v" by simp
+      then have "s \<in> ALT r1 r2 \<rightarrow> Left (snd (simp r1) v)" by (rule Posix_ALT1) 
+      then show "s \<in> ALT r1 r2 \<rightarrow> snd (simp (ALT r1 r2)) v" using NZERO_ZERO by simp
+    next
+      case (NZERO_NZERO)
+      with as have "s \<in> ALT (fst (simp r1)) (fst (simp r2)) \<rightarrow> v" by simp
+      then consider (Left) v1 where "v = Left v1" "s \<in> (fst (simp r1)) \<rightarrow> v1"
+                  | (Right) v2 where "v = Right v2" "s \<in> (fst (simp r2)) \<rightarrow> v2" "s \<notin> L (fst (simp r1))"
+                  by (erule_tac Posix_elims(4)) 
+      then show "s \<in> ALT r1 r2 \<rightarrow> snd (simp (ALT r1 r2)) v"
+      proof(cases)
+        case (Left)
+        then have "v = Left v1" "s \<in> r1 \<rightarrow> (snd (simp r1) v1)" using IH1 by simp_all
+        then show "s \<in> ALT r1 r2 \<rightarrow> snd (simp (ALT r1 r2)) v" using NZERO_NZERO
+          by (simp_all add: Posix_ALT1)
+      next 
+        case (Right)
+        then have "v = Right v2" "s \<in> r2 \<rightarrow> (snd (simp r2) v2)" "s \<notin> L r1" using IH2 L_fst_simp by simp_all
+        then show "s \<in> ALT r1 r2 \<rightarrow> snd (simp (ALT r1 r2)) v" using NZERO_NZERO
+          by (simp_all add: Posix_ALT2)
+      qed
+    qed
+next
+  case (SEQ r1 r2 s v)
+  have IH1: "\<And>s v. s \<in> fst (simp r1) \<rightarrow> v \<Longrightarrow> s \<in> r1 \<rightarrow> snd (simp r1) v" by fact
+  have IH2: "\<And>s v. s \<in> fst (simp r2) \<rightarrow> v \<Longrightarrow> s \<in> r2 \<rightarrow> snd (simp r2) v" by fact
+  have as: "s \<in> fst (simp (SEQ r1 r2)) \<rightarrow> v" by fact
+  consider (ONE_ONE) "fst (simp r1) = ONE" "fst (simp r2) = ONE"
+         | (ONE_NONE) "fst (simp r1) = ONE" "fst (simp r2) \<noteq> ONE"
+         | (NONE_ONE) "fst (simp r1) \<noteq> ONE" "fst (simp r2) = ONE"
+         | (NONE_NONE) "fst (simp r1) \<noteq> ONE" "fst (simp r2) \<noteq> ONE" 
+         by auto
+  then show "s \<in> SEQ r1 r2 \<rightarrow> snd (simp (SEQ r1 r2)) v" 
+  proof(cases)
+      case (ONE_ONE)
+      with as have b: "s \<in> ONE \<rightarrow> v" by simp 
+      from b have "s \<in> r1 \<rightarrow> snd (simp r1) v" using IH1 ONE_ONE by simp
+      moreover
+      from b have c: "s = []" "v = Void" using Posix_elims(2) by auto
+      moreover
+      have "[] \<in> ONE \<rightarrow> Void" by (simp add: Posix_ONE)
+      then have "[] \<in> fst (simp r2) \<rightarrow> Void" using ONE_ONE by simp
+      then have "[] \<in> r2 \<rightarrow> snd (simp r2) Void" using IH2 by simp
+      ultimately have "([] @ []) \<in> SEQ r1 r2 \<rightarrow> Seq (snd (simp r1) Void) (snd (simp r2) Void)"
+        using Posix_SEQ by blast 
+      then show "s \<in> SEQ r1 r2 \<rightarrow> snd (simp (SEQ r1 r2)) v" using c ONE_ONE by simp
+    next
+      case (ONE_NONE)
+      with as have b: "s \<in> fst (simp r2) \<rightarrow> v" by simp 
+      from b have "s \<in> r2 \<rightarrow> snd (simp r2) v" using IH2 ONE_NONE by simp
+      moreover
+      have "[] \<in> ONE \<rightarrow> Void" by (simp add: Posix_ONE)
+      then have "[] \<in> fst (simp r1) \<rightarrow> Void" using ONE_NONE by simp
+      then have "[] \<in> r1 \<rightarrow> snd (simp r1) Void" using IH1 by simp
+      moreover
+      from ONE_NONE(1) have "L (fst (simp r1)) = {[]}" by simp
+      then have "L r1 = {[]}" by (simp add: L_fst_simp[symmetric])
+      ultimately have "([] @ s) \<in> SEQ r1 r2 \<rightarrow> Seq (snd (simp r1) Void) (snd (simp r2) v)"
+        by(rule_tac Posix_SEQ) auto
+      then show "s \<in> SEQ r1 r2 \<rightarrow> snd (simp (SEQ r1 r2)) v" using ONE_NONE by simp
+    next
+      case (NONE_ONE)
+        with as have "s \<in> fst (simp r1) \<rightarrow> v" by simp
+        with IH1 have "s \<in> r1 \<rightarrow> snd (simp r1) v" by simp
+      moreover
+        have "[] \<in> ONE \<rightarrow> Void" by (simp add: Posix_ONE)
+        then have "[] \<in> fst (simp r2) \<rightarrow> Void" using NONE_ONE by simp
+        then have "[] \<in> r2 \<rightarrow> snd (simp r2) Void" using IH2 by simp
+      ultimately have "(s @ []) \<in> SEQ r1 r2 \<rightarrow> Seq (snd (simp r1) v) (snd (simp r2) Void)"
+        by(rule_tac Posix_SEQ) auto
+      then show "s \<in> SEQ r1 r2 \<rightarrow> snd (simp (SEQ r1 r2)) v" using NONE_ONE by simp
+    next
+      case (NONE_NONE)
+      from as have 00: "fst (simp r1) \<noteq> ZERO" "fst (simp r2) \<noteq> ZERO" 
+        apply(auto)
+        apply(smt Posix_elims(1) fst_conv)
+        by (smt NONE_NONE(2) Posix_elims(1) fstI)
+      with NONE_NONE as have "s \<in> SEQ (fst (simp r1)) (fst (simp r2)) \<rightarrow> v" by simp
+      then obtain s1 s2 v1 v2 where eqs: "s = s1 @ s2" "v = Seq v1 v2"
+                     "s1 \<in> (fst (simp r1)) \<rightarrow> v1" "s2 \<in> (fst (simp r2)) \<rightarrow> v2"
+                     "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)"
+                     by (erule_tac Posix_elims(5)) (auto simp add: L_fst_simp[symmetric]) 
+      then have "s1 \<in> r1 \<rightarrow> (snd (simp r1) v1)" "s2 \<in> r2 \<rightarrow> (snd (simp r2) v2)"
+        using IH1 IH2 by auto             
+      then show "s \<in> SEQ r1 r2 \<rightarrow> snd (simp (SEQ r1 r2)) v" using eqs NONE_NONE 00
+        by(auto intro: Posix_SEQ)
+    qed
+qed (simp_all)
+
+
+lemma slexer_correctness:
+  shows "slexer r s = lexer r s"
+proof(induct s arbitrary: r)
+  case Nil
+  show "slexer r [] = lexer r []" by simp
+next 
+  case (Cons c s r)
+  have IH: "\<And>r. slexer r s = lexer r s" by fact
+  show "slexer r (c # s) = lexer r (c # s)" 
+   proof (cases "s \<in> L (der c r)")
+     case True
+       assume a1: "s \<in> L (der c r)"
+       then obtain v1 where a2: "lexer (der c r) s = Some v1" "s \<in> der c r \<rightarrow> v1"
+         using lexer_correct_Some by auto
+       from a1 have "s \<in> L (fst (simp (der c r)))" using L_fst_simp[symmetric] by simp
+       then obtain v2 where a3: "lexer (fst (simp (der c r))) s = Some v2" "s \<in> (fst (simp (der c r))) \<rightarrow> v2"
+          using lexer_correct_Some by auto
+       then have a4: "slexer (fst (simp (der c r))) s = Some v2" using IH by simp
+       from a3(2) have "s \<in> der c r \<rightarrow> (snd (simp (der c r))) v2" using Posix_simp by simp
+       with a2(2) have "v1 = (snd (simp (der c r))) v2" using Posix_determ by simp
+       with a2(1) a4 show "slexer r (c # s) = lexer r (c # s)" by (auto split: prod.split)
+     next 
+     case False
+       assume b1: "s \<notin> L (der c r)"
+       then have "lexer (der c r) s = None" using lexer_correct_None by simp
+       moreover
+       from b1 have "s \<notin> L (fst (simp (der c r)))" using L_fst_simp[symmetric] by simp
+       then have "lexer (fst (simp (der c r))) s = None" using lexer_correct_None by simp
+       then have "slexer (fst (simp (der c r))) s = None" using IH by simp
+       ultimately show "slexer r (c # s) = lexer r (c # s)" 
+         by (simp del: slexer.simps add: slexer_better_simp)
+   qed
+ qed  
+
+
+unused_thms
+
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys3/PDerivs.thy	Wed Jun 29 12:38:05 2022 +0100
@@ -0,0 +1,603 @@
+   
+theory PDerivs
+  imports PosixSpec 
+begin
+
+
+
+abbreviation
+  "SEQs rs r \<equiv> (\<Union>r' \<in> rs. {SEQ r' r})"
+
+lemma SEQs_eq_image:
+  "SEQs rs r = (\<lambda>r'. SEQ r' r) ` rs"
+  by auto
+
+fun
+  pder :: "char \<Rightarrow> rexp \<Rightarrow> rexp set"
+where
+  "pder c ZERO = {}"
+| "pder c ONE = {}"
+| "pder c (CH d) = (if c = d then {ONE} else {})"
+| "pder c (ALT r1 r2) = (pder c r1) \<union> (pder c r2)"
+| "pder c (SEQ r1 r2) = 
+    (if nullable r1 then SEQs (pder c r1) r2 \<union> pder c r2 else SEQs (pder c r1) r2)"
+| "pder c (STAR r) = SEQs (pder c r) (STAR r)"
+
+fun
+  pders :: "char list \<Rightarrow> rexp \<Rightarrow> rexp set"
+where
+  "pders [] r = {r}"
+| "pders (c # s) r = \<Union> (pders s ` pder c r)"
+
+abbreviation
+ pder_set :: "char \<Rightarrow> rexp set \<Rightarrow> rexp set"
+where
+  "pder_set c rs \<equiv> \<Union> (pder c ` rs)"
+
+abbreviation
+  pders_set :: "char list \<Rightarrow> rexp set \<Rightarrow> rexp set"
+where
+  "pders_set s rs \<equiv> \<Union> (pders s ` rs)"
+
+lemma pders_append:
+  "pders (s1 @ s2) r = \<Union> (pders s2 ` pders s1 r)"
+by (induct s1 arbitrary: r) (simp_all)
+
+lemma pders_snoc:
+  shows "pders (s @ [c]) r = pder_set c (pders s r)"
+by (simp add: pders_append)
+
+lemma pders_simps [simp]:
+  shows "pders s ZERO = (if s = [] then {ZERO} else {})"
+  and   "pders s ONE = (if s = [] then {ONE} else {})"
+  and   "pders s (ALT r1 r2) = (if s = [] then {ALT r1 r2} else (pders s r1) \<union> (pders s r2))"
+by (induct s) (simp_all)
+
+lemma pders_CHAR:
+  shows "pders s (CH c) \<subseteq> {CH c, ONE}"
+by (induct s) (simp_all)
+
+subsection \<open>Relating left-quotients and partial derivatives\<close>
+
+lemma Sequ_UNION_distrib:
+shows "A ;; \<Union>(M ` I) = \<Union>((\<lambda>i. A ;; M i) ` I)"
+and   "\<Union>(M ` I) ;; A = \<Union>((\<lambda>i. M i ;; A) ` I)"
+by (auto simp add: Sequ_def)
+
+
+lemma Der_pder:
+  shows "Der c (L r) = \<Union> (L ` pder c r)"
+by (induct r) (simp_all add: nullable_correctness Sequ_UNION_distrib)
+  
+lemma Ders_pders:
+  shows "Ders s (L r) = \<Union> (L ` pders s r)"
+proof (induct s arbitrary: r)
+  case (Cons c s)
+  have ih: "\<And>r. Ders s (L r) = \<Union> (L ` pders s r)" by fact
+  have "Ders (c # s) (L r) = Ders s (Der c (L r))" by (simp add: Ders_def Der_def)
+  also have "\<dots> = Ders s (\<Union> (L ` pder c r))" by (simp add: Der_pder)
+  also have "\<dots> = (\<Union>A\<in>(L ` (pder c r)). (Ders s A))"
+    by (auto simp add:  Ders_def)
+  also have "\<dots> = \<Union> (L ` (pders_set s (pder c r)))"
+    using ih by auto
+  also have "\<dots> = \<Union> (L ` (pders (c # s) r))" by simp
+  finally show "Ders (c # s) (L r) = \<Union> (L ` pders (c # s) r)" .
+qed (simp add: Ders_def)
+
+subsection \<open>Relating derivatives and partial derivatives\<close>
+
+lemma der_pder:
+  shows "\<Union> (L ` (pder c r)) = L (der c r)"
+unfolding der_correctness Der_pder by simp
+
+lemma ders_pders:
+  shows "\<Union> (L ` (pders s r)) = L (ders s r)"
+unfolding der_correctness ders_correctness Ders_pders by simp
+
+
+subsection \<open>Finiteness property of partial derivatives\<close>
+
+definition
+  pders_Set :: "string set \<Rightarrow> rexp \<Rightarrow> rexp set"
+where
+  "pders_Set A r \<equiv> \<Union>x \<in> A. pders x r"
+
+lemma pders_Set_subsetI:
+  assumes "\<And>s. s \<in> A \<Longrightarrow> pders s r \<subseteq> C"
+  shows "pders_Set A r \<subseteq> C"
+using assms unfolding pders_Set_def by (rule UN_least)
+
+lemma pders_Set_union:
+  shows "pders_Set (A \<union> B) r = (pders_Set A r \<union> pders_Set B r)"
+by (simp add: pders_Set_def)
+
+lemma pders_Set_subset:
+  shows "A \<subseteq> B \<Longrightarrow> pders_Set A r \<subseteq> pders_Set B r"
+by (auto simp add: pders_Set_def)
+
+definition
+  "UNIV1 \<equiv> UNIV - {[]}"
+
+lemma pders_Set_ZERO [simp]:
+  shows "pders_Set UNIV1 ZERO = {}"
+unfolding UNIV1_def pders_Set_def by auto
+
+lemma pders_Set_ONE [simp]:
+  shows "pders_Set UNIV1 ONE = {}"
+unfolding UNIV1_def pders_Set_def by (auto split: if_splits)
+
+lemma pders_Set_CHAR [simp]:
+  shows "pders_Set UNIV1 (CH c) = {ONE}"
+unfolding UNIV1_def pders_Set_def
+apply(auto)
+apply(frule rev_subsetD)
+apply(rule pders_CHAR)
+apply(simp)
+apply(case_tac xa)
+apply(auto split: if_splits)
+done
+
+lemma pders_Set_ALT [simp]:
+  shows "pders_Set UNIV1 (ALT r1 r2) = pders_Set UNIV1 r1 \<union> pders_Set UNIV1 r2"
+unfolding UNIV1_def pders_Set_def by auto
+
+
+text \<open>Non-empty suffixes of a string (needed for the cases of @{const SEQ} and @{const STAR} below)\<close>
+
+definition
+  "PSuf s \<equiv> {v. v \<noteq> [] \<and> (\<exists>u. u @ v = s)}"
+
+lemma PSuf_snoc:
+  shows "PSuf (s @ [c]) = (PSuf s) ;; {[c]} \<union> {[c]}"
+unfolding PSuf_def Sequ_def
+by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv)
+
+lemma PSuf_Union:
+  shows "(\<Union>v \<in> PSuf s ;; {[c]}. f v) = (\<Union>v \<in> PSuf s. f (v @ [c]))"
+by (auto simp add: Sequ_def)
+
+lemma pders_Set_snoc:
+  shows "pders_Set (PSuf s ;; {[c]}) r = (pder_set c (pders_Set (PSuf s) r))"
+unfolding pders_Set_def
+by (simp add: PSuf_Union pders_snoc)
+
+lemma pders_SEQ:
+  shows "pders s (SEQ r1 r2) \<subseteq> SEQs (pders s r1) r2 \<union> (pders_Set (PSuf s) r2)"
+proof (induct s rule: rev_induct)
+  case (snoc c s)
+  have ih: "pders s (SEQ r1 r2) \<subseteq> SEQs (pders s r1) r2 \<union> (pders_Set (PSuf s) r2)" 
+    by fact
+  have "pders (s @ [c]) (SEQ r1 r2) = pder_set c (pders s (SEQ r1 r2))" 
+    by (simp add: pders_snoc)
+  also have "\<dots> \<subseteq> pder_set c (SEQs (pders s r1) r2 \<union> (pders_Set (PSuf s) r2))"
+    using ih by fastforce
+  also have "\<dots> = pder_set c (SEQs (pders s r1) r2) \<union> pder_set c (pders_Set (PSuf s) r2)"
+    by (simp)
+  also have "\<dots> = pder_set c (SEQs (pders s r1) r2) \<union> pders_Set (PSuf s ;; {[c]}) r2"
+    by (simp add: pders_Set_snoc)
+  also 
+  have "\<dots> \<subseteq> pder_set c (SEQs (pders s r1) r2) \<union> pder c r2 \<union> pders_Set (PSuf s ;; {[c]}) r2"
+    by auto
+  also 
+  have "\<dots> \<subseteq> SEQs (pder_set c (pders s r1)) r2 \<union> pder c r2 \<union> pders_Set (PSuf s ;; {[c]}) r2"
+    by (auto simp add: if_splits)
+  also have "\<dots> = SEQs (pders (s @ [c]) r1) r2 \<union> pder c r2 \<union> pders_Set (PSuf s ;; {[c]}) r2"
+    by (simp add: pders_snoc)
+  also have "\<dots> \<subseteq> SEQs (pders (s @ [c]) r1) r2 \<union> pders_Set (PSuf (s @ [c])) r2"
+    unfolding pders_Set_def by (auto simp add: PSuf_snoc)  
+  finally show ?case .
+qed (simp) 
+
+lemma pders_Set_SEQ_aux1:
+  assumes a: "s \<in> UNIV1"
+  shows "pders_Set (PSuf s) r \<subseteq> pders_Set UNIV1 r"
+using a unfolding UNIV1_def PSuf_def pders_Set_def by auto
+
+lemma pders_Set_SEQ_aux2:
+  assumes a: "s \<in> UNIV1"
+  shows "SEQs (pders s r1) r2 \<subseteq> SEQs (pders_Set UNIV1 r1) r2"
+using a unfolding pders_Set_def by auto
+
+lemma pders_Set_SEQ:
+  shows "pders_Set UNIV1 (SEQ r1 r2) \<subseteq> SEQs (pders_Set UNIV1 r1) r2 \<union> pders_Set UNIV1 r2"
+apply(rule pders_Set_subsetI)
+apply(rule subset_trans)
+apply(rule pders_SEQ)
+using pders_Set_SEQ_aux1 pders_Set_SEQ_aux2
+apply auto
+apply blast
+done
+
+lemma pders_STAR:
+  assumes a: "s \<noteq> []"
+  shows "pders s (STAR r) \<subseteq> SEQs (pders_Set (PSuf s) r) (STAR r)"
+using a
+proof (induct s rule: rev_induct)
+  case (snoc c s)
+  have ih: "s \<noteq> [] \<Longrightarrow> pders s (STAR r) \<subseteq> SEQs (pders_Set (PSuf s) r) (STAR r)" by fact
+  { assume asm: "s \<noteq> []"
+    have "pders (s @ [c]) (STAR r) = pder_set c (pders s (STAR r))" by (simp add: pders_snoc)
+    also have "\<dots> \<subseteq> pder_set c (SEQs (pders_Set (PSuf s) r) (STAR r))"
+      using ih[OF asm] by fast
+    also have "\<dots> \<subseteq> SEQs (pder_set c (pders_Set (PSuf s) r)) (STAR r) \<union> pder c (STAR r)"
+      by (auto split: if_splits)
+    also have "\<dots> \<subseteq> SEQs (pders_Set (PSuf (s @ [c])) r) (STAR r) \<union> (SEQs (pder c r) (STAR r))"
+      by (simp only: PSuf_snoc pders_Set_snoc pders_Set_union)
+         (auto simp add: pders_Set_def)
+    also have "\<dots> = SEQs (pders_Set (PSuf (s @ [c])) r) (STAR r)"
+      by (auto simp add: PSuf_snoc PSuf_Union pders_snoc pders_Set_def)
+    finally have ?case .
+  }
+  moreover
+  { assume asm: "s = []"
+    then have ?case by (auto simp add: pders_Set_def pders_snoc PSuf_def)
+  }
+  ultimately show ?case by blast
+qed (simp)
+
+lemma pders_Set_STAR:
+  shows "pders_Set UNIV1 (STAR r) \<subseteq> SEQs (pders_Set UNIV1 r) (STAR r)"
+apply(rule pders_Set_subsetI)
+apply(rule subset_trans)
+apply(rule pders_STAR)
+apply(simp add: UNIV1_def)
+apply(simp add: UNIV1_def PSuf_def)
+apply(auto simp add: pders_Set_def)
+done
+
+lemma finite_SEQs [simp]:
+  assumes a: "finite A"
+  shows "finite (SEQs A r)"
+using a by auto
+
+
+lemma finite_pders_Set_UNIV1:
+  shows "finite (pders_Set UNIV1 r)"
+apply(induct r)
+apply(simp_all add: 
+  finite_subset[OF pders_Set_SEQ]
+  finite_subset[OF pders_Set_STAR])
+done
+    
+lemma pders_Set_UNIV:
+  shows "pders_Set UNIV r = pders [] r \<union> pders_Set UNIV1 r"
+unfolding UNIV1_def pders_Set_def
+by blast
+
+lemma finite_pders_Set_UNIV:
+  shows "finite (pders_Set UNIV r)"
+unfolding pders_Set_UNIV
+by (simp add: finite_pders_Set_UNIV1)
+
+lemma finite_pders_set:
+  shows "finite (pders_Set A r)"
+by (metis finite_pders_Set_UNIV pders_Set_subset rev_finite_subset subset_UNIV)
+
+
+text \<open>The following relationship between the alphabetic width of regular expressions
+(called \<open>awidth\<close> below) and the number of partial derivatives was proved
+by Antimirov~\cite{Antimirov95} and formalized by Max Haslbeck.\<close>
+
+fun awidth :: "rexp \<Rightarrow> nat" where
+"awidth ZERO = 0" |
+"awidth ONE = 0" |
+"awidth (CH a) = 1" |
+"awidth (ALT r1 r2) = awidth r1 + awidth r2" |
+"awidth (SEQ r1 r2) = awidth r1 + awidth r2" |
+"awidth (STAR r1) = awidth r1"
+
+lemma card_SEQs_pders_Set_le:
+  shows  "card (SEQs (pders_Set A r) s) \<le> card (pders_Set A r)"
+  using finite_pders_set 
+  unfolding SEQs_eq_image 
+  by (rule card_image_le)
+
+lemma card_pders_set_UNIV1_le_awidth: 
+  shows "card (pders_Set UNIV1 r) \<le> awidth r"
+proof (induction r)
+  case (ALT r1 r2)
+  have "card (pders_Set UNIV1 (ALT r1 r2)) = card (pders_Set UNIV1 r1 \<union> pders_Set UNIV1 r2)" by simp
+  also have "\<dots> \<le> card (pders_Set UNIV1 r1) + card (pders_Set UNIV1 r2)"
+    by(simp add: card_Un_le)
+  also have "\<dots> \<le> awidth (ALT r1 r2)" using ALT.IH by simp
+  finally show ?case .
+next
+  case (SEQ r1 r2)
+  have "card (pders_Set UNIV1 (SEQ r1 r2)) \<le> card (SEQs (pders_Set UNIV1 r1) r2 \<union> pders_Set UNIV1 r2)"
+    by (simp add: card_mono finite_pders_set pders_Set_SEQ)
+  also have "\<dots> \<le> card (SEQs (pders_Set UNIV1 r1) r2) + card (pders_Set UNIV1 r2)"
+    by (simp add: card_Un_le)
+  also have "\<dots> \<le> card (pders_Set UNIV1 r1) + card (pders_Set UNIV1 r2)"
+    by (simp add: card_SEQs_pders_Set_le)
+  also have "\<dots> \<le> awidth (SEQ r1 r2)" using SEQ.IH by simp
+  finally show ?case .
+next
+  case (STAR r)
+  have "card (pders_Set UNIV1 (STAR r)) \<le> card (SEQs (pders_Set UNIV1 r) (STAR r))"
+    by (simp add: card_mono finite_pders_set pders_Set_STAR)
+  also have "\<dots> \<le> card (pders_Set UNIV1 r)" by (rule card_SEQs_pders_Set_le)
+  also have "\<dots> \<le> awidth (STAR r)" by (simp add: STAR.IH)
+  finally show ?case .
+qed (auto)
+
+text\<open>Antimirov's Theorem 3.4:\<close>
+
+theorem card_pders_set_UNIV_le_awidth: 
+  shows "card (pders_Set UNIV r) \<le> awidth r + 1"
+proof -
+  have "card (insert r (pders_Set UNIV1 r)) \<le> Suc (card (pders_Set UNIV1 r))"
+    by(auto simp: card_insert_if[OF finite_pders_Set_UNIV1])
+  also have "\<dots> \<le> Suc (awidth r)" by(simp add: card_pders_set_UNIV1_le_awidth)
+  finally show ?thesis by(simp add: pders_Set_UNIV)
+qed 
+
+text\<open>Antimirov's Corollary 3.5:\<close>
+(*W stands for word set*)
+corollary card_pders_set_le_awidth: 
+  shows "card (pders_Set W r) \<le> awidth r + 1"
+proof -
+  have "card (pders_Set W r) \<le> card (pders_Set UNIV r)"
+    by (simp add: card_mono finite_pders_set pders_Set_subset)
+  also have "... \<le> awidth r + 1"
+    by (rule card_pders_set_UNIV_le_awidth)
+  finally show "card (pders_Set W r) \<le> awidth r + 1" by simp
+qed
+
+(* other result by antimirov *)
+
+lemma card_pders_awidth: 
+  shows "card (pders s r) \<le> awidth r + 1"
+proof -
+  have "pders s r \<subseteq> pders_Set UNIV r"
+    using pders_Set_def by auto
+  then have "card (pders s r) \<le> card (pders_Set UNIV r)"
+    by (simp add: card_mono finite_pders_set)
+  then show "card (pders s r) \<le> awidth r + 1"
+    using card_pders_set_le_awidth order_trans by blast
+qed
+    
+  
+  
+
+
+fun subs :: "rexp \<Rightarrow> rexp set" where
+"subs ZERO = {ZERO}" |
+"subs ONE = {ONE}" |
+"subs (CH a) = {CH a, ONE}" |
+"subs (ALT r1 r2) = (subs r1 \<union> subs r2 \<union> {ALT r1 r2})" |
+"subs (SEQ r1 r2) = (subs r1 \<union> subs r2 \<union> {SEQ r1 r2} \<union>  SEQs (subs r1) r2)" |
+"subs (STAR r1) = (subs r1 \<union> {STAR r1} \<union> SEQs (subs r1) (STAR r1))"
+
+lemma subs_finite:
+  shows "finite (subs r)"
+  apply(induct r) 
+  apply(simp_all)
+  done
+
+
+
+lemma pders_subs:
+  shows "pders s r \<subseteq> subs r"
+  apply(induct r arbitrary: s)
+       apply(simp)
+      apply(simp)
+     apply(simp add: pders_CHAR)
+(*  SEQ case *)
+    apply(simp)
+    apply(rule subset_trans)
+     apply(rule pders_SEQ)
+    defer
+(* ALT case *)
+    apply(simp)
+    apply(rule impI)
+    apply(rule conjI)
+  apply blast
+    apply blast
+(* STAR case *)
+    apply(case_tac s)
+    apply(simp)
+   apply(rule subset_trans)
+  thm pders_STAR
+     apply(rule pders_STAR)
+     apply(simp)
+    apply(auto simp add: pders_Set_def)[1]
+  apply(simp)
+  apply(rule conjI)
+   apply blast
+apply(auto simp add: pders_Set_def)[1]
+  done
+
+fun size2 :: "rexp \<Rightarrow> nat" where
+  "size2 ZERO = 1" |
+  "size2 ONE = 1" |
+  "size2 (CH c) = 1" |
+  "size2 (ALT r1 r2) = Suc (size2 r1 + size2 r2)" |
+  "size2 (SEQ r1 r2) = Suc (size2 r1 + size2 r2)" |
+  "size2 (STAR r1) = Suc (size2 r1)" 
+
+
+lemma size_rexp:
+  fixes r :: rexp
+  shows "1 \<le> size2 r"
+  apply(induct r)
+  apply(simp)
+  apply(simp_all)
+  done
+
+lemma subs_size2:
+  shows "\<forall>r1 \<in> subs r. size2 r1 \<le> Suc (size2 r * size2 r)"
+  apply(induct r)
+       apply(simp)
+      apply(simp)
+     apply(simp)
+(* SEQ case *)
+    apply(simp)
+    apply(auto)[1]
+  apply (smt Suc_n_not_le_n add.commute distrib_left le_Suc_eq left_add_mult_distrib nat_le_linear trans_le_add1)
+  apply (smt Suc_le_mono Suc_n_not_le_n le_trans nat_le_linear power2_eq_square power2_sum semiring_normalization_rules(23) trans_le_add2)
+  apply (smt Groups.add_ac(3) Suc_n_not_le_n distrib_left le_Suc_eq left_add_mult_distrib nat_le_linear trans_le_add1)
+(*  ALT case  *)
+   apply(simp)
+   apply(auto)[1]
+  apply (smt Groups.add_ac(2) Suc_le_mono Suc_n_not_le_n le_add2 linear order_trans power2_eq_square power2_sum)
+  apply (smt Groups.add_ac(2) Suc_le_mono Suc_n_not_le_n left_add_mult_distrib linear mult.commute order.trans trans_le_add1)
+(* STAR case *)
+  apply(auto)[1]
+  apply(drule_tac x="r'" in bspec)
+   apply(simp)
+  apply(rule le_trans)
+   apply(assumption)
+  apply(simp)
+  using size_rexp
+  apply(simp)
+  done
+
+lemma awidth_size:
+  shows "awidth r \<le> size2 r"
+  apply(induct r)
+       apply(simp_all)
+  done
+
+lemma Sum1:
+  fixes A B :: "nat set"
+  assumes "A \<subseteq> B" "finite A" "finite B"
+  shows "\<Sum>A \<le> \<Sum>B"
+  using  assms
+  by (simp add: sum_mono2)
+
+lemma Sum2:
+  fixes A :: "rexp set"  
+  and   f g :: "rexp \<Rightarrow> nat" 
+  assumes "finite A" "\<forall>x \<in> A. f x \<le> g x"
+  shows "sum f A \<le> sum g A"
+  using  assms
+  apply(induct A)
+   apply(auto)
+  done
+
+
+
+
+
+lemma pders_max_size:
+  shows "(sum size2 (pders s r)) \<le> (Suc (size2 r)) ^ 3"
+proof -
+  have "(sum size2 (pders s r)) \<le> sum (\<lambda>_. Suc (size2 r  * size2 r)) (pders s r)" 
+    apply(rule_tac Sum2)
+     apply (meson pders_subs rev_finite_subset subs_finite)
+    using pders_subs subs_size2 by blast
+  also have "... \<le> (Suc (size2 r  * size2 r)) * (sum (\<lambda>_. 1) (pders s r))"
+    by simp
+  also have "... \<le> (Suc (size2 r  * size2 r)) * card (pders s r)"
+    by simp
+  also have "... \<le> (Suc (size2 r  * size2 r)) * (Suc (awidth r))"
+    using Suc_eq_plus1 card_pders_awidth mult_le_mono2 by presburger
+  also have "... \<le> (Suc (size2 r  * size2 r)) * (Suc (size2 r))"
+    using Suc_le_mono awidth_size mult_le_mono2 by presburger
+  also have "... \<le> (Suc (size2 r)) ^ 3"
+    by (smt One_nat_def Suc_1 Suc_mult_le_cancel1 Suc_n_not_le_n antisym_conv le_Suc_eq mult.commute nat_le_linear numeral_3_eq_3 power2_eq_square power2_le_imp_le power_Suc size_rexp)    
+  finally show ?thesis  .
+qed
+  
+lemma pders_Set_max_size:
+  shows "(sum size2 (pders_Set A r)) \<le> (Suc (size2 r)) ^ 3"
+proof -
+  have "(sum size2 (pders_Set A r)) \<le> sum (\<lambda>_. Suc (size2 r  * size2 r)) (pders_Set A r)" 
+    apply(rule_tac Sum2)
+     apply (simp add: finite_pders_set)
+    by (meson pders_Set_subsetI pders_subs subs_size2 subsetD)
+  also have "... \<le> (Suc (size2 r  * size2 r)) * (sum (\<lambda>_. 1) (pders_Set A r))"
+    by simp
+  also have "... \<le> (Suc (size2 r  * size2 r)) * card (pders_Set A r)"
+    by simp
+  also have "... \<le> (Suc (size2 r  * size2 r)) * (Suc (awidth r))"
+    using Suc_eq_plus1 card_pders_set_le_awidth mult_le_mono2 by presburger
+  also have "... \<le> (Suc (size2 r  * size2 r)) * (Suc (size2 r))"
+    using Suc_le_mono awidth_size mult_le_mono2 by presburger
+  also have "... \<le> (Suc (size2 r)) ^ 3"
+    by (smt One_nat_def Suc_1 Suc_mult_le_cancel1 Suc_n_not_le_n antisym_conv le_Suc_eq mult.commute nat_le_linear numeral_3_eq_3 power2_eq_square power2_le_imp_le power_Suc size_rexp)    
+  finally show ?thesis  .
+qed    
+
+fun height :: "rexp \<Rightarrow> nat" where
+  "height ZERO = 1" |
+  "height ONE = 1" |
+  "height (CH c) = 1" |
+  "height (ALT r1 r2) = Suc (max (height r1) (height r2))" |
+  "height (SEQ r1 r2) = Suc (max (height r1) (height r2))" |
+  "height (STAR r1) = Suc (height r1)" 
+
+lemma height_size2:
+  shows "height r \<le> size2 r"
+  apply(induct r)
+  apply(simp_all)
+  done
+
+lemma height_rexp:
+  fixes r :: rexp
+  shows "1 \<le> height r"
+  apply(induct r)
+  apply(simp_all)
+  done
+
+lemma subs_height:
+  shows "\<forall>r1 \<in> subs r. height r1 \<le> Suc (height r)"
+  apply(induct r)
+  apply(auto)+
+  done  
+
+fun lin_concat :: "(char \<times> rexp) \<Rightarrow> rexp \<Rightarrow> (char \<times> rexp)" (infixl "[.]" 91)
+  where
+"(c, ZERO) [.] t = (c, ZERO)"
+| "(c, ONE) [.] t = (c, t)"
+| "(c, p) [.] t = (c, SEQ p t)"
+
+
+fun circle_concat :: "(char \<times> rexp ) set \<Rightarrow> rexp \<Rightarrow> (char \<times> rexp) set" ( infixl "\<circle>" 90)
+  where
+"l \<circle> ZERO = {}"
+| "l \<circle> ONE = l"
+| "l \<circle> t  = ( (\<lambda>p.  p [.] t) ` l ) "
+
+
+
+fun linear_form :: "rexp \<Rightarrow>( char \<times> rexp ) set" 
+  where
+  "linear_form ZERO = {}"
+| "linear_form ONE = {}"
+| "linear_form (CH c)  = {(c, ONE)}"
+| "linear_form (ALT r1 r2) = (linear_form) r1 \<union> (linear_form r2)"
+| "linear_form (SEQ r1 r2) = (if (nullable r1) then (linear_form r1) \<circle> r2 \<union> linear_form r2 else  (linear_form r1) \<circle> r2) "
+| "linear_form (STAR r ) = (linear_form r) \<circle> (STAR r)"
+
+
+value "linear_form (SEQ (STAR (CH x)) (STAR (ALT (SEQ (CH x) (CH x)) (CH y)  ))  )"
+
+
+value "linear_form  (STAR (ALT (SEQ (CH x) (CH x)) (CH y)  ))  "
+
+fun pdero :: "char \<Rightarrow> rexp \<Rightarrow> rexp set"
+  where
+"pdero c t  = \<Union> ((\<lambda>(d, p). if d = c then {p} else {}) ` (linear_form t) )"
+
+fun pderso :: "char list \<Rightarrow> rexp \<Rightarrow> rexp set"
+  where
+  "pderso [] r = {r}"
+|  "pderso (c # s) r = \<Union> ( pderso s ` (pdero c r) )"
+
+lemma pdero_result: 
+  shows "pdero  c (STAR (ALT (CH c) (SEQ (CH c) (CH c)))) =  {SEQ (CH c)(STAR (ALT (CH c) (SEQ (CH c) (CH c)))),(STAR (ALT (CH c) (SEQ (CH c) (CH c))))}"
+  apply(simp)
+  by auto
+
+fun concatLen :: "rexp \<Rightarrow> nat" where
+"concatLen ZERO = 0" |
+"concatLen ONE = 0" |
+"concatLen (CH c) = 0" |
+"concatLen (SEQ v1 v2) = Suc (max (concatLen v1) (concatLen v2))" |
+" concatLen (ALT v1 v2) =  max (concatLen v1) (concatLen v2)" |
+" concatLen (STAR v) = Suc (concatLen v)" 
+
+
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys3/Positions.thy	Wed Jun 29 12:38:05 2022 +0100
@@ -0,0 +1,773 @@
+   
+theory Positions
+  imports PosixSpec Lexer
+begin
+
+chapter \<open>An alternative definition for POSIX values\<close>
+
+section \<open>Positions in Values\<close>
+
+fun 
+  at :: "val \<Rightarrow> nat list \<Rightarrow> val"
+where
+  "at v [] = v"
+| "at (Left v) (0#ps)= at v ps"
+| "at (Right v) (Suc 0#ps)= at v ps"
+| "at (Seq v1 v2) (0#ps)= at v1 ps"
+| "at (Seq v1 v2) (Suc 0#ps)= at v2 ps"
+| "at (Stars vs) (n#ps)= at (nth vs n) ps"
+
+
+
+fun Pos :: "val \<Rightarrow> (nat list) set"
+where
+  "Pos (Void) = {[]}"
+| "Pos (Char c) = {[]}"
+| "Pos (Left v) = {[]} \<union> {0#ps | ps. ps \<in> Pos v}"
+| "Pos (Right v) = {[]} \<union> {1#ps | ps. ps \<in> Pos v}"
+| "Pos (Seq v1 v2) = {[]} \<union> {0#ps | ps. ps \<in> Pos v1} \<union> {1#ps | ps. ps \<in> Pos v2}" 
+| "Pos (Stars []) = {[]}"
+| "Pos (Stars (v#vs)) = {[]} \<union> {0#ps | ps. ps \<in> Pos v} \<union> {Suc n#ps | n ps. n#ps \<in> Pos (Stars vs)}"
+
+
+lemma Pos_stars:
+  "Pos (Stars vs) = {[]} \<union> (\<Union>n < length vs. {n#ps | ps. ps \<in> Pos (vs ! n)})"
+apply(induct vs)
+apply(auto simp add: insert_ident less_Suc_eq_0_disj)
+done
+
+lemma Pos_empty:
+  shows "[] \<in> Pos v"
+by (induct v rule: Pos.induct)(auto)
+
+
+abbreviation
+  "intlen vs \<equiv> int (length vs)"
+
+
+definition pflat_len :: "val \<Rightarrow> nat list => int"
+where
+  "pflat_len v p \<equiv> (if p \<in> Pos v then intlen (flat (at v p)) else -1)"
+
+lemma pflat_len_simps:
+  shows "pflat_len (Seq v1 v2) (0#p) = pflat_len v1 p"
+  and   "pflat_len (Seq v1 v2) (Suc 0#p) = pflat_len v2 p"
+  and   "pflat_len (Left v) (0#p) = pflat_len v p"
+  and   "pflat_len (Left v) (Suc 0#p) = -1"
+  and   "pflat_len (Right v) (Suc 0#p) = pflat_len v p"
+  and   "pflat_len (Right v) (0#p) = -1"
+  and   "pflat_len (Stars (v#vs)) (Suc n#p) = pflat_len (Stars vs) (n#p)"
+  and   "pflat_len (Stars (v#vs)) (0#p) = pflat_len v p"
+  and   "pflat_len v [] = intlen (flat v)"
+by (auto simp add: pflat_len_def Pos_empty)
+
+lemma pflat_len_Stars_simps:
+  assumes "n < length vs"
+  shows "pflat_len (Stars vs) (n#p) = pflat_len (vs!n) p"
+using assms
+apply(induct vs arbitrary: n p)
+apply(auto simp add: less_Suc_eq_0_disj pflat_len_simps)
+done
+
+lemma pflat_len_outside:
+  assumes "p \<notin> Pos v1"
+  shows "pflat_len v1 p = -1 "
+using assms by (simp add: pflat_len_def)
+
+
+
+section \<open>Orderings\<close>
+
+
+definition prefix_list:: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" ("_ \<sqsubseteq>pre _" [60,59] 60)
+where
+  "ps1 \<sqsubseteq>pre ps2 \<equiv> \<exists>ps'. ps1 @ps' = ps2"
+
+definition sprefix_list:: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" ("_ \<sqsubset>spre _" [60,59] 60)
+where
+  "ps1 \<sqsubset>spre ps2 \<equiv> ps1 \<sqsubseteq>pre ps2 \<and> ps1 \<noteq> ps2"
+
+inductive lex_list :: "nat list \<Rightarrow> nat list \<Rightarrow> bool" ("_ \<sqsubset>lex _" [60,59] 60)
+where
+  "[] \<sqsubset>lex (p#ps)"
+| "ps1 \<sqsubset>lex ps2 \<Longrightarrow> (p#ps1) \<sqsubset>lex (p#ps2)"
+| "p1 < p2 \<Longrightarrow> (p1#ps1) \<sqsubset>lex (p2#ps2)"
+
+lemma lex_irrfl:
+  fixes ps1 ps2 :: "nat list"
+  assumes "ps1 \<sqsubset>lex ps2"
+  shows "ps1 \<noteq> ps2"
+using assms
+by(induct rule: lex_list.induct)(auto)
+
+lemma lex_simps [simp]:
+  fixes xs ys :: "nat list"
+  shows "[] \<sqsubset>lex ys \<longleftrightarrow> ys \<noteq> []"
+  and   "xs \<sqsubset>lex [] \<longleftrightarrow> False"
+  and   "(x # xs) \<sqsubset>lex (y # ys) \<longleftrightarrow> (x < y \<or> (x = y \<and> xs \<sqsubset>lex ys))"
+by (auto simp add: neq_Nil_conv elim: lex_list.cases intro: lex_list.intros)
+
+lemma lex_trans:
+  fixes ps1 ps2 ps3 :: "nat list"
+  assumes "ps1 \<sqsubset>lex ps2" "ps2 \<sqsubset>lex ps3"
+  shows "ps1 \<sqsubset>lex ps3"
+using assms
+by (induct arbitrary: ps3 rule: lex_list.induct)
+   (auto elim: lex_list.cases)
+
+
+lemma lex_trichotomous:
+  fixes p q :: "nat list"
+  shows "p = q \<or> p \<sqsubset>lex q \<or> q \<sqsubset>lex p"
+apply(induct p arbitrary: q)
+apply(auto elim: lex_list.cases)
+apply(case_tac q)
+apply(auto)
+done
+
+
+
+
+section \<open>POSIX Ordering of Values According to Okui \& Suzuki\<close>
+
+
+definition PosOrd:: "val \<Rightarrow> nat list \<Rightarrow> val \<Rightarrow> bool" ("_ \<sqsubset>val _ _" [60, 60, 59] 60)
+where
+  "v1 \<sqsubset>val p v2 \<equiv> pflat_len v1 p > pflat_len v2 p \<and>
+                   (\<forall>q \<in> Pos v1 \<union> Pos v2. q \<sqsubset>lex p \<longrightarrow> pflat_len v1 q = pflat_len v2 q)"
+
+lemma PosOrd_def2:
+  shows "v1 \<sqsubset>val p v2 \<longleftrightarrow> 
+         pflat_len v1 p > pflat_len v2 p \<and>
+         (\<forall>q \<in> Pos v1. q \<sqsubset>lex p \<longrightarrow> pflat_len v1 q = pflat_len v2 q) \<and>
+         (\<forall>q \<in> Pos v2. q \<sqsubset>lex p \<longrightarrow> pflat_len v1 q = pflat_len v2 q)"
+unfolding PosOrd_def
+apply(auto)
+done
+
+
+definition PosOrd_ex:: "val \<Rightarrow> val \<Rightarrow> bool" ("_ :\<sqsubset>val _" [60, 59] 60)
+where
+  "v1 :\<sqsubset>val v2 \<equiv> \<exists>p. v1 \<sqsubset>val p v2"
+
+definition PosOrd_ex_eq:: "val \<Rightarrow> val \<Rightarrow> bool" ("_ :\<sqsubseteq>val _" [60, 59] 60)
+where
+  "v1 :\<sqsubseteq>val v2 \<equiv> v1 :\<sqsubset>val v2 \<or> v1 = v2"
+
+
+lemma PosOrd_trans:
+  assumes "v1 :\<sqsubset>val v2" "v2 :\<sqsubset>val v3"
+  shows "v1 :\<sqsubset>val v3"
+proof -
+  from assms obtain p p'
+    where as: "v1 \<sqsubset>val p v2" "v2 \<sqsubset>val p' v3" unfolding PosOrd_ex_def by blast
+  then have pos: "p \<in> Pos v1" "p' \<in> Pos v2" unfolding PosOrd_def pflat_len_def
+    by (smt not_int_zless_negative)+
+  have "p = p' \<or> p \<sqsubset>lex p' \<or> p' \<sqsubset>lex p"
+    by (rule lex_trichotomous)
+  moreover
+    { assume "p = p'"
+      with as have "v1 \<sqsubset>val p v3" unfolding PosOrd_def pflat_len_def
+      by (smt Un_iff)
+      then have " v1 :\<sqsubset>val v3" unfolding PosOrd_ex_def by blast
+    }   
+  moreover
+    { assume "p \<sqsubset>lex p'"
+      with as have "v1 \<sqsubset>val p v3" unfolding PosOrd_def pflat_len_def
+      by (smt Un_iff lex_trans)
+      then have " v1 :\<sqsubset>val v3" unfolding PosOrd_ex_def by blast
+    }
+  moreover
+    { assume "p' \<sqsubset>lex p"
+      with as have "v1 \<sqsubset>val p' v3" unfolding PosOrd_def
+      by (smt Un_iff lex_trans pflat_len_def)
+      then have "v1 :\<sqsubset>val v3" unfolding PosOrd_ex_def by blast
+    }
+  ultimately show "v1 :\<sqsubset>val v3" by blast
+qed
+
+lemma PosOrd_irrefl:
+  assumes "v :\<sqsubset>val v"
+  shows "False"
+using assms unfolding PosOrd_ex_def PosOrd_def
+by auto
+
+lemma PosOrd_assym:
+  assumes "v1 :\<sqsubset>val v2" 
+  shows "\<not>(v2 :\<sqsubset>val v1)"
+using assms
+using PosOrd_irrefl PosOrd_trans by blast 
+
+(*
+  :\<sqsubseteq>val and :\<sqsubset>val are partial orders.
+*)
+
+lemma PosOrd_ordering:
+  shows "ordering (\<lambda>v1 v2. v1 :\<sqsubseteq>val v2) (\<lambda> v1 v2. v1 :\<sqsubset>val v2)"
+unfolding ordering_def PosOrd_ex_eq_def
+apply(auto)
+using PosOrd_trans partial_preordering_def apply blast
+using PosOrd_assym ordering_axioms_def by blast
+
+lemma PosOrd_order:
+  shows "class.order (\<lambda>v1 v2. v1 :\<sqsubseteq>val v2) (\<lambda> v1 v2. v1 :\<sqsubset>val v2)"
+using PosOrd_ordering
+apply(simp add: class.order_def class.preorder_def class.order_axioms_def)
+  by (metis (full_types) PosOrd_ex_eq_def PosOrd_irrefl PosOrd_trans)
+
+
+lemma PosOrd_ex_eq2:
+  shows "v1 :\<sqsubset>val v2 \<longleftrightarrow> (v1 :\<sqsubseteq>val v2 \<and> v1 \<noteq> v2)"
+  using PosOrd_ordering
+  using PosOrd_ex_eq_def PosOrd_irrefl by blast 
+
+lemma PosOrdeq_trans:
+  assumes "v1 :\<sqsubseteq>val v2" "v2 :\<sqsubseteq>val v3"
+  shows "v1 :\<sqsubseteq>val v3"
+using assms PosOrd_ordering 
+  unfolding ordering_def
+  by (metis partial_preordering.trans)
+
+lemma PosOrdeq_antisym:
+  assumes "v1 :\<sqsubseteq>val v2" "v2 :\<sqsubseteq>val v1"
+  shows "v1 = v2"
+using assms PosOrd_ordering 
+  unfolding ordering_def
+  by (simp add: ordering_axioms_def)
+
+lemma PosOrdeq_refl:
+  shows "v :\<sqsubseteq>val v" 
+unfolding PosOrd_ex_eq_def
+by auto
+
+
+lemma PosOrd_shorterE:
+  assumes "v1 :\<sqsubset>val v2" 
+  shows "length (flat v2) \<le> length (flat v1)"
+using assms unfolding PosOrd_ex_def PosOrd_def
+apply(auto)
+apply(case_tac p)
+apply(simp add: pflat_len_simps)
+apply(drule_tac x="[]" in bspec)
+apply(simp add: Pos_empty)
+apply(simp add: pflat_len_simps)
+done
+
+lemma PosOrd_shorterI:
+  assumes "length (flat v2) < length (flat v1)"
+  shows "v1 :\<sqsubset>val v2"
+unfolding PosOrd_ex_def PosOrd_def pflat_len_def 
+using assms Pos_empty by force
+
+lemma PosOrd_spreI:
+  assumes "flat v' \<sqsubset>spre flat v"
+  shows "v :\<sqsubset>val v'" 
+using assms
+apply(rule_tac PosOrd_shorterI)
+unfolding prefix_list_def sprefix_list_def
+by (metis append_Nil2 append_eq_conv_conj drop_all le_less_linear)
+
+lemma pflat_len_inside:
+  assumes "pflat_len v2 p < pflat_len v1 p"
+  shows "p \<in> Pos v1"
+using assms 
+unfolding pflat_len_def
+by (auto split: if_splits)
+
+
+lemma PosOrd_Left_Right:
+  assumes "flat v1 = flat v2"
+  shows "Left v1 :\<sqsubset>val Right v2" 
+unfolding PosOrd_ex_def
+apply(rule_tac x="[0]" in exI)
+apply(auto simp add: PosOrd_def pflat_len_simps assms)
+done
+
+lemma PosOrd_LeftE:
+  assumes "Left v1 :\<sqsubset>val Left v2" "flat v1 = flat v2"
+  shows "v1 :\<sqsubset>val v2"
+using assms
+unfolding PosOrd_ex_def PosOrd_def2
+apply(auto simp add: pflat_len_simps)
+apply(frule pflat_len_inside)
+apply(auto simp add: pflat_len_simps)
+by (metis lex_simps(3) pflat_len_simps(3))
+
+lemma PosOrd_LeftI:
+  assumes "v1 :\<sqsubset>val v2" "flat v1 = flat v2"
+  shows  "Left v1 :\<sqsubset>val Left v2"
+using assms
+unfolding PosOrd_ex_def PosOrd_def2
+apply(auto simp add: pflat_len_simps)
+by (metis less_numeral_extra(3) lex_simps(3) pflat_len_simps(3))
+
+lemma PosOrd_Left_eq:
+  assumes "flat v1 = flat v2"
+  shows "Left v1 :\<sqsubset>val Left v2 \<longleftrightarrow> v1 :\<sqsubset>val v2" 
+using assms PosOrd_LeftE PosOrd_LeftI
+by blast
+
+
+lemma PosOrd_RightE:
+  assumes "Right v1 :\<sqsubset>val Right v2" "flat v1 = flat v2"
+  shows "v1 :\<sqsubset>val v2"
+using assms
+unfolding PosOrd_ex_def PosOrd_def2
+apply(auto simp add: pflat_len_simps)
+apply(frule pflat_len_inside)
+apply(auto simp add: pflat_len_simps)
+by (metis lex_simps(3) pflat_len_simps(5))
+
+lemma PosOrd_RightI:
+  assumes "v1 :\<sqsubset>val v2" "flat v1 = flat v2"
+  shows  "Right v1 :\<sqsubset>val Right v2"
+using assms
+unfolding PosOrd_ex_def PosOrd_def2
+apply(auto simp add: pflat_len_simps)
+by (metis lex_simps(3) nat_neq_iff pflat_len_simps(5))
+
+
+lemma PosOrd_Right_eq:
+  assumes "flat v1 = flat v2"
+  shows "Right v1 :\<sqsubset>val Right v2 \<longleftrightarrow> v1 :\<sqsubset>val v2" 
+using assms PosOrd_RightE PosOrd_RightI
+by blast
+
+
+lemma PosOrd_SeqI1:
+  assumes "v1 :\<sqsubset>val w1" "flat (Seq v1 v2) = flat (Seq w1 w2)"
+  shows "Seq v1 v2 :\<sqsubset>val Seq w1 w2" 
+using assms(1)
+apply(subst (asm) PosOrd_ex_def)
+apply(subst (asm) PosOrd_def)
+apply(clarify)
+apply(subst PosOrd_ex_def)
+apply(rule_tac x="0#p" in exI)
+apply(subst PosOrd_def)
+apply(rule conjI)
+apply(simp add: pflat_len_simps)
+apply(rule ballI)
+apply(rule impI)
+apply(simp only: Pos.simps)
+apply(auto)[1]
+apply(simp add: pflat_len_simps)
+apply(auto simp add: pflat_len_simps)
+using assms(2)
+apply(simp)
+apply(metis length_append of_nat_add)
+done
+
+lemma PosOrd_SeqI2:
+  assumes "v2 :\<sqsubset>val w2" "flat v2 = flat w2"
+  shows "Seq v v2 :\<sqsubset>val Seq v w2" 
+using assms(1)
+apply(subst (asm) PosOrd_ex_def)
+apply(subst (asm) PosOrd_def)
+apply(clarify)
+apply(subst PosOrd_ex_def)
+apply(rule_tac x="Suc 0#p" in exI)
+apply(subst PosOrd_def)
+apply(rule conjI)
+apply(simp add: pflat_len_simps)
+apply(rule ballI)
+apply(rule impI)
+apply(simp only: Pos.simps)
+apply(auto)[1]
+apply(simp add: pflat_len_simps)
+using assms(2)
+apply(simp)
+apply(auto simp add: pflat_len_simps)
+done
+
+lemma PosOrd_Seq_eq:
+  assumes "flat v2 = flat w2"
+  shows "(Seq v v2) :\<sqsubset>val (Seq v w2) \<longleftrightarrow> v2 :\<sqsubset>val w2"
+using assms 
+apply(auto)
+prefer 2
+apply(simp add: PosOrd_SeqI2)
+apply(simp add: PosOrd_ex_def)
+apply(auto)
+apply(case_tac p)
+apply(simp add: PosOrd_def pflat_len_simps)
+apply(case_tac a)
+apply(simp add: PosOrd_def pflat_len_simps)
+apply(clarify)
+apply(case_tac nat)
+prefer 2
+apply(simp add: PosOrd_def pflat_len_simps pflat_len_outside)
+apply(rule_tac x="list" in exI)
+apply(auto simp add: PosOrd_def2 pflat_len_simps)
+apply(smt Collect_disj_eq lex_list.intros(2) mem_Collect_eq pflat_len_simps(2))
+apply(smt Collect_disj_eq lex_list.intros(2) mem_Collect_eq pflat_len_simps(2))
+done
+
+
+
+lemma PosOrd_StarsI:
+  assumes "v1 :\<sqsubset>val v2" "flats (v1#vs1) = flats (v2#vs2)"
+  shows "Stars (v1#vs1) :\<sqsubset>val Stars (v2#vs2)" 
+using assms(1)
+apply(subst (asm) PosOrd_ex_def)
+apply(subst (asm) PosOrd_def)
+apply(clarify)
+apply(subst PosOrd_ex_def)
+apply(subst PosOrd_def)
+apply(rule_tac x="0#p" in exI)
+apply(simp add: pflat_len_Stars_simps pflat_len_simps)
+using assms(2)
+apply(simp add: pflat_len_simps)
+apply(auto simp add: pflat_len_Stars_simps pflat_len_simps)
+by (metis length_append of_nat_add)
+
+lemma PosOrd_StarsI2:
+  assumes "Stars vs1 :\<sqsubset>val Stars vs2" "flats vs1 = flats vs2"
+  shows "Stars (v#vs1) :\<sqsubset>val Stars (v#vs2)" 
+using assms(1)
+apply(subst (asm) PosOrd_ex_def)
+apply(subst (asm) PosOrd_def)
+apply(clarify)
+apply(subst PosOrd_ex_def)
+apply(subst PosOrd_def)
+apply(case_tac p)
+apply(simp add: pflat_len_simps)
+apply(rule_tac x="Suc a#list" in exI)
+apply(auto simp add: pflat_len_Stars_simps pflat_len_simps assms(2))
+done
+
+lemma PosOrd_Stars_appendI:
+  assumes "Stars vs1 :\<sqsubset>val Stars vs2" "flat (Stars vs1) = flat (Stars vs2)"
+  shows "Stars (vs @ vs1) :\<sqsubset>val Stars (vs @ vs2)"
+using assms
+apply(induct vs)
+apply(simp)
+apply(simp add: PosOrd_StarsI2)
+done
+
+lemma PosOrd_StarsE2:
+  assumes "Stars (v # vs1) :\<sqsubset>val Stars (v # vs2)"
+  shows "Stars vs1 :\<sqsubset>val Stars vs2"
+using assms
+apply(subst (asm) PosOrd_ex_def)
+apply(erule exE)
+apply(case_tac p)
+apply(simp)
+apply(simp add: PosOrd_def pflat_len_simps)
+apply(subst PosOrd_ex_def)
+apply(rule_tac x="[]" in exI)
+apply(simp add: PosOrd_def pflat_len_simps Pos_empty)
+apply(simp)
+apply(case_tac a)
+apply(clarify)
+apply(auto simp add: pflat_len_simps PosOrd_def pflat_len_def split: if_splits)[1]
+apply(clarify)
+apply(simp add: PosOrd_ex_def)
+apply(rule_tac x="nat#list" in exI)
+apply(auto simp add: PosOrd_def pflat_len_simps)[1]
+apply(case_tac q)
+apply(simp add: PosOrd_def pflat_len_simps)
+apply(clarify)
+apply(drule_tac x="Suc a # lista" in bspec)
+apply(simp)
+apply(auto simp add: PosOrd_def pflat_len_simps)[1]
+apply(case_tac q)
+apply(simp add: PosOrd_def pflat_len_simps)
+apply(clarify)
+apply(drule_tac x="Suc a # lista" in bspec)
+apply(simp)
+apply(auto simp add: PosOrd_def pflat_len_simps)[1]
+done
+
+lemma PosOrd_Stars_appendE:
+  assumes "Stars (vs @ vs1) :\<sqsubset>val Stars (vs @ vs2)"
+  shows "Stars vs1 :\<sqsubset>val Stars vs2"
+using assms
+apply(induct vs)
+apply(simp)
+apply(simp add: PosOrd_StarsE2)
+done
+
+lemma PosOrd_Stars_append_eq:
+  assumes "flats vs1 = flats vs2"
+  shows "Stars (vs @ vs1) :\<sqsubset>val Stars (vs @ vs2) \<longleftrightarrow> Stars vs1 :\<sqsubset>val Stars vs2"
+using assms
+apply(rule_tac iffI)
+apply(erule PosOrd_Stars_appendE)
+apply(rule PosOrd_Stars_appendI)
+apply(auto)
+done  
+
+lemma PosOrd_almost_trichotomous:
+  shows "v1 :\<sqsubset>val v2 \<or> v2 :\<sqsubset>val v1 \<or> (length (flat v1) = length (flat v2))"
+apply(auto simp add: PosOrd_ex_def)
+apply(auto simp add: PosOrd_def)
+apply(rule_tac x="[]" in exI)
+apply(auto simp add: Pos_empty pflat_len_simps)
+apply(drule_tac x="[]" in spec)
+apply(auto simp add: Pos_empty pflat_len_simps)
+done
+
+
+
+section \<open>The Posix Value is smaller than any other Value\<close>
+
+
+lemma Posix_PosOrd:
+  assumes "s \<in> r \<rightarrow> v1" "v2 \<in> LV r s" 
+  shows "v1 :\<sqsubseteq>val v2"
+using assms
+proof (induct arbitrary: v2 rule: Posix.induct)
+  case (Posix_ONE v)
+  have "v \<in> LV ONE []" by fact
+  then have "v = Void"
+    by (simp add: LV_simps)
+  then show "Void :\<sqsubseteq>val v"
+    by (simp add: PosOrd_ex_eq_def)
+next
+  case (Posix_CH c v)
+  have "v \<in> LV (CH c) [c]" by fact
+  then have "v = Char c"
+    by (simp add: LV_simps)
+  then show "Char c :\<sqsubseteq>val v"
+    by (simp add: PosOrd_ex_eq_def)
+next
+  case (Posix_ALT1 s r1 v r2 v2)
+  have as1: "s \<in> r1 \<rightarrow> v" by fact
+  have IH: "\<And>v2. v2 \<in> LV r1 s \<Longrightarrow> v :\<sqsubseteq>val v2" by fact
+  have "v2 \<in> LV (ALT r1 r2) s" by fact
+  then have "\<Turnstile> v2 : ALT r1 r2" "flat v2 = s"
+    by(auto simp add: LV_def prefix_list_def)
+  then consider
+    (Left) v3 where "v2 = Left v3" "\<Turnstile> v3 : r1" "flat v3 = s" 
+  | (Right) v3 where "v2 = Right v3" "\<Turnstile> v3 : r2" "flat v3 = s"
+  by (auto elim: Prf.cases)
+  then show "Left v :\<sqsubseteq>val v2"
+  proof(cases)
+     case (Left v3)
+     have "v3 \<in> LV r1 s" using Left(2,3) 
+       by (auto simp add: LV_def prefix_list_def)
+     with IH have "v :\<sqsubseteq>val v3" by simp
+     moreover
+     have "flat v3 = flat v" using as1 Left(3)
+       by (simp add: Posix1(2)) 
+     ultimately have "Left v :\<sqsubseteq>val Left v3"
+       by (simp add: PosOrd_ex_eq_def PosOrd_Left_eq)
+     then show "Left v :\<sqsubseteq>val v2" unfolding Left .
+  next
+     case (Right v3)
+     have "flat v3 = flat v" using as1 Right(3)
+       by (simp add: Posix1(2)) 
+     then have "Left v :\<sqsubseteq>val Right v3" 
+       unfolding PosOrd_ex_eq_def
+       by (simp add: PosOrd_Left_Right)
+     then show "Left v :\<sqsubseteq>val v2" unfolding Right .
+  qed
+next
+  case (Posix_ALT2 s r2 v r1 v2)
+  have as1: "s \<in> r2 \<rightarrow> v" by fact
+  have as2: "s \<notin> L r1" by fact
+  have IH: "\<And>v2. v2 \<in> LV r2 s \<Longrightarrow> v :\<sqsubseteq>val v2" by fact
+  have "v2 \<in> LV (ALT r1 r2) s" by fact
+  then have "\<Turnstile> v2 : ALT r1 r2" "flat v2 = s"
+    by(auto simp add: LV_def prefix_list_def)
+  then consider
+    (Left) v3 where "v2 = Left v3" "\<Turnstile> v3 : r1" "flat v3 = s" 
+  | (Right) v3 where "v2 = Right v3" "\<Turnstile> v3 : r2" "flat v3 = s"
+  by (auto elim: Prf.cases)
+  then show "Right v :\<sqsubseteq>val v2"
+  proof (cases)
+    case (Right v3)
+     have "v3 \<in> LV r2 s" using Right(2,3) 
+       by (auto simp add: LV_def prefix_list_def)
+     with IH have "v :\<sqsubseteq>val v3" by simp
+     moreover
+     have "flat v3 = flat v" using as1 Right(3)
+       by (simp add: Posix1(2)) 
+     ultimately have "Right v :\<sqsubseteq>val Right v3" 
+        by (auto simp add: PosOrd_ex_eq_def PosOrd_RightI)
+     then show "Right v :\<sqsubseteq>val v2" unfolding Right .
+  next
+     case (Left v3)
+     have "v3 \<in> LV r1 s" using Left(2,3) as2  
+       by (auto simp add: LV_def prefix_list_def)
+     then have "flat v3 = flat v \<and> \<Turnstile> v3 : r1" using as1 Left(3)
+       by (simp add: Posix1(2) LV_def) 
+     then have "False" using as1 as2 Left
+       by (auto simp add: Posix1(2) L_flat_Prf1)
+     then show "Right v :\<sqsubseteq>val v2" by simp
+  qed
+next 
+  case (Posix_SEQ s1 r1 v1 s2 r2 v2 v3)
+  have "s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" by fact+
+  then have as1: "s1 = flat v1" "s2 = flat v2" by (simp_all add: Posix1(2))
+  have IH1: "\<And>v3. v3 \<in> LV r1 s1 \<Longrightarrow> v1 :\<sqsubseteq>val v3" by fact
+  have IH2: "\<And>v3. v3 \<in> LV r2 s2 \<Longrightarrow> v2 :\<sqsubseteq>val v3" by fact
+  have cond: "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact
+  have "v3 \<in> LV (SEQ r1 r2) (s1 @ s2)" by fact
+  then obtain v3a v3b where eqs:
+    "v3 = Seq v3a v3b" "\<Turnstile> v3a : r1" "\<Turnstile> v3b : r2"
+    "flat v3a @ flat v3b = s1 @ s2" 
+    by (force simp add: prefix_list_def LV_def elim: Prf.cases)
+  with cond have "flat v3a \<sqsubseteq>pre s1" unfolding prefix_list_def
+    by (smt L_flat_Prf1 append_eq_append_conv2 append_self_conv)
+  then have "flat v3a \<sqsubset>spre s1 \<or> (flat v3a = s1 \<and> flat v3b = s2)" using eqs
+    by (simp add: sprefix_list_def append_eq_conv_conj)
+  then have q2: "v1 :\<sqsubset>val v3a \<or> (flat v3a = s1 \<and> flat v3b = s2)" 
+    using PosOrd_spreI as1(1) eqs by blast
+  then have "v1 :\<sqsubset>val v3a \<or> (v3a \<in> LV r1 s1 \<and> v3b \<in> LV r2 s2)" using eqs(2,3)
+    by (auto simp add: LV_def)
+  then have "v1 :\<sqsubset>val v3a \<or> (v1 :\<sqsubseteq>val v3a \<and> v2 :\<sqsubseteq>val v3b)" using IH1 IH2 by blast         
+  then have "Seq v1 v2 :\<sqsubseteq>val Seq v3a v3b" using eqs q2 as1
+    unfolding  PosOrd_ex_eq_def by (auto simp add: PosOrd_SeqI1 PosOrd_Seq_eq) 
+  then show "Seq v1 v2 :\<sqsubseteq>val v3" unfolding eqs by blast
+next 
+  case (Posix_STAR1 s1 r v s2 vs v3) 
+  have "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" by fact+
+  then have as1: "s1 = flat v" "s2 = flat (Stars vs)" by (auto dest: Posix1(2))
+  have IH1: "\<And>v3. v3 \<in> LV r s1 \<Longrightarrow> v :\<sqsubseteq>val v3" by fact
+  have IH2: "\<And>v3. v3 \<in> LV (STAR r) s2 \<Longrightarrow> Stars vs :\<sqsubseteq>val v3" by fact
+  have cond: "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact
+  have cond2: "flat v \<noteq> []" by fact
+  have "v3 \<in> LV (STAR r) (s1 @ s2)" by fact
+  then consider 
+    (NonEmpty) v3a vs3 where "v3 = Stars (v3a # vs3)" 
+    "\<Turnstile> v3a : r" "\<Turnstile> Stars vs3 : STAR r"
+    "flat (Stars (v3a # vs3)) = s1 @ s2"
+  | (Empty) "v3 = Stars []"
+  unfolding LV_def  
+  apply(auto)
+  apply(erule Prf.cases)
+  apply(auto)
+  apply(case_tac vs)
+  apply(auto intro: Prf.intros)
+  done
+  then show "Stars (v # vs) :\<sqsubseteq>val v3" 
+    proof (cases)
+      case (NonEmpty v3a vs3)
+      have "flat (Stars (v3a # vs3)) = s1 @ s2" using NonEmpty(4) . 
+      with cond have "flat v3a \<sqsubseteq>pre s1" using NonEmpty(2,3)
+        unfolding prefix_list_def
+        by (smt L_flat_Prf1 append_Nil2 append_eq_append_conv2 flat.simps(7)) 
+      then have "flat v3a \<sqsubset>spre s1 \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" using NonEmpty(4)
+        by (simp add: sprefix_list_def append_eq_conv_conj)
+      then have q2: "v :\<sqsubset>val v3a \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" 
+        using PosOrd_spreI as1(1) NonEmpty(4) by blast
+      then have "v :\<sqsubset>val v3a \<or> (v3a \<in> LV r s1 \<and> Stars vs3 \<in> LV (STAR r) s2)" 
+        using NonEmpty(2,3) by (auto simp add: LV_def)
+      then have "v :\<sqsubset>val v3a \<or> (v :\<sqsubseteq>val v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" using IH1 IH2 by blast
+      then have "v :\<sqsubset>val v3a \<or> (v = v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" 
+         unfolding PosOrd_ex_eq_def by auto     
+      then have "Stars (v # vs) :\<sqsubseteq>val Stars (v3a # vs3)" using NonEmpty(4) q2 as1
+        unfolding  PosOrd_ex_eq_def
+        using PosOrd_StarsI PosOrd_StarsI2 by auto 
+      then show "Stars (v # vs) :\<sqsubseteq>val v3" unfolding NonEmpty by blast
+    next 
+      case Empty
+      have "v3 = Stars []" by fact
+      then show "Stars (v # vs) :\<sqsubseteq>val v3"
+      unfolding PosOrd_ex_eq_def using cond2
+      by (simp add: PosOrd_shorterI)
+    qed      
+next 
+  case (Posix_STAR2 r v2)
+  have "v2 \<in> LV (STAR r) []" by fact
+  then have "v2 = Stars []" 
+    unfolding LV_def by (auto elim: Prf.cases) 
+  then show "Stars [] :\<sqsubseteq>val v2"
+  by (simp add: PosOrd_ex_eq_def)
+qed
+
+
+lemma Posix_PosOrd_reverse:
+  assumes "s \<in> r \<rightarrow> v1" 
+  shows "\<not>(\<exists>v2 \<in> LV r s. v2 :\<sqsubset>val v1)"
+using assms
+by (metis Posix_PosOrd less_irrefl PosOrd_def 
+    PosOrd_ex_eq_def PosOrd_ex_def PosOrd_trans)
+
+lemma PosOrd_Posix:
+  assumes "v1 \<in> LV r s" "\<forall>v\<^sub>2 \<in> LV r s. \<not> v\<^sub>2 :\<sqsubset>val v1"
+  shows "s \<in> r \<rightarrow> v1" 
+proof -
+  have "s \<in> L r" using assms(1) unfolding LV_def
+    using L_flat_Prf1 by blast 
+  then obtain vposix where vp: "s \<in> r \<rightarrow> vposix"
+    using lexer_correct_Some by blast 
+  with assms(1) have "vposix :\<sqsubseteq>val v1" by (simp add: Posix_PosOrd) 
+  then have "vposix = v1 \<or> vposix :\<sqsubset>val v1" unfolding PosOrd_ex_eq2 by auto
+  moreover
+    { assume "vposix :\<sqsubset>val v1"
+      moreover
+      have "vposix \<in> LV r s" using vp 
+         using Posix_LV by blast 
+      ultimately have "False" using assms(2) by blast
+    }
+  ultimately show "s \<in> r \<rightarrow> v1" using vp by blast
+qed
+
+lemma Least_existence:
+  assumes "LV r s \<noteq> {}"
+  shows " \<exists>vmin \<in> LV r s. \<forall>v \<in> LV r s. vmin :\<sqsubseteq>val v"
+proof -
+  from assms
+  obtain vposix where "s \<in> r \<rightarrow> vposix"
+  unfolding LV_def 
+  using L_flat_Prf1 lexer_correct_Some by blast
+  then have "\<forall>v \<in> LV r s. vposix :\<sqsubseteq>val v"
+    by (simp add: Posix_PosOrd)
+  then show "\<exists>vmin \<in> LV r s. \<forall>v \<in> LV r s. vmin :\<sqsubseteq>val v"
+    using Posix_LV \<open>s \<in> r \<rightarrow> vposix\<close> by blast
+qed 
+
+lemma Least_existence1:
+  assumes "LV r s \<noteq> {}"
+  shows " \<exists>!vmin \<in> LV r s. \<forall>v \<in> LV r s. vmin :\<sqsubseteq>val v"
+using Least_existence[OF assms] assms
+using PosOrdeq_antisym by blast
+
+lemma Least_existence2:
+  assumes "LV r s \<noteq> {}"
+  shows " \<exists>!vmin \<in> LV r s. lexer r s = Some vmin \<and> (\<forall>v \<in> LV r s. vmin :\<sqsubseteq>val v)"
+using Least_existence[OF assms] assms
+using PosOrdeq_antisym 
+  using PosOrd_Posix PosOrd_ex_eq2 lexer_correctness(1) by auto
+
+
+lemma Least_existence1_pre:
+  assumes "LV r s \<noteq> {}"
+  shows " \<exists>!vmin \<in> LV r s. \<forall>v \<in> (LV r s \<union> {v'. flat v' \<sqsubset>spre s}). vmin :\<sqsubseteq>val v"
+using Least_existence[OF assms] assms
+apply -
+apply(erule bexE)
+apply(rule_tac a="vmin" in ex1I)
+apply(auto)[1]
+apply (metis PosOrd_Posix PosOrd_ex_eq2 PosOrd_spreI PosOrdeq_antisym Posix1(2))
+apply(auto)[1]
+apply(simp add: PosOrdeq_antisym)
+done
+
+lemma
+  shows "partial_order_on UNIV {(v1, v2). v1 :\<sqsubseteq>val v2}"
+apply(simp add: partial_order_on_def)
+apply(simp add: preorder_on_def refl_on_def)
+apply(simp add: PosOrdeq_refl)
+apply(auto)
+apply(rule transI)
+apply(auto intro: PosOrdeq_trans)[1]
+apply(rule antisymI)
+apply(simp add: PosOrdeq_antisym)
+done
+
+lemma
+ "wf {(v1, v2). v1 :\<sqsubset>val v2 \<and> v1 \<in> LV r s \<and> v2 \<in> LV r s}"
+apply(rule finite_acyclic_wf)
+prefer 2
+apply(simp add: acyclic_def)
+apply(induct_tac rule: trancl.induct)
+apply(auto)[1]
+oops
+
+
+unused_thms
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys3/PosixSpec.thy	Wed Jun 29 12:38:05 2022 +0100
@@ -0,0 +1,380 @@
+   
+theory PosixSpec
+  imports RegLangs
+begin
+
+section \<open>"Plain" Values\<close>
+
+datatype val = 
+  Void
+| Char char
+| Seq val val
+| Right val
+| Left val
+| Stars "val list"
+
+
+section \<open>The string behind a value\<close>
+
+fun 
+  flat :: "val \<Rightarrow> string"
+where
+  "flat (Void) = []"
+| "flat (Char c) = [c]"
+| "flat (Left v) = flat v"
+| "flat (Right v) = flat v"
+| "flat (Seq v1 v2) = (flat v1) @ (flat v2)"
+| "flat (Stars []) = []"
+| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" 
+
+abbreviation
+  "flats vs \<equiv> concat (map flat vs)"
+
+lemma flat_Stars [simp]:
+ "flat (Stars vs) = flats vs"
+by (induct vs) (auto)
+
+
+section \<open>Lexical Values\<close>
+
+inductive 
+  Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<Turnstile> _ : _" [100, 100] 100)
+where
+ "\<lbrakk>\<Turnstile> v1 : r1; \<Turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<Turnstile>  Seq v1 v2 : SEQ r1 r2"
+| "\<Turnstile> v1 : r1 \<Longrightarrow> \<Turnstile> Left v1 : ALT r1 r2"
+| "\<Turnstile> v2 : r2 \<Longrightarrow> \<Turnstile> Right v2 : ALT r1 r2"
+| "\<Turnstile> Void : ONE"
+| "\<Turnstile> Char c : CH c"
+| "\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> [] \<Longrightarrow> \<Turnstile> Stars vs : STAR r"
+
+inductive_cases Prf_elims:
+  "\<Turnstile> v : ZERO"
+  "\<Turnstile> v : SEQ r1 r2"
+  "\<Turnstile> v : ALT r1 r2"
+  "\<Turnstile> v : ONE"
+  "\<Turnstile> v : CH c"
+  "\<Turnstile> vs : STAR r"
+
+lemma Prf_Stars_appendE:
+  assumes "\<Turnstile> Stars (vs1 @ vs2) : STAR r"
+  shows "\<Turnstile> Stars vs1 : STAR r \<and> \<Turnstile> Stars vs2 : STAR r" 
+using assms
+by (auto intro: Prf.intros elim!: Prf_elims)
+
+
+lemma flats_Prf_value:
+  assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
+  shows "\<exists>vs. flats vs = concat ss \<and> (\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> [])"
+using assms
+apply(induct ss)
+apply(auto)
+apply(rule_tac x="[]" in exI)
+apply(simp)
+apply(case_tac "flat v = []")
+apply(rule_tac x="vs" in exI)
+apply(simp)
+apply(rule_tac x="v#vs" in exI)
+apply(simp)
+done
+
+
+lemma L_flat_Prf1:
+  assumes "\<Turnstile> v : r" 
+  shows "flat v \<in> L r"
+using assms
+by (induct) (auto simp add: Sequ_def Star_concat)
+
+lemma L_flat_Prf2:
+  assumes "s \<in> L r" 
+  shows "\<exists>v. \<Turnstile> v : r \<and> flat v = s"
+using assms
+proof(induct r arbitrary: s)
+  case (STAR r s)
+  have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
+  have "s \<in> L (STAR r)" by fact
+  then obtain ss where "concat ss = s" "\<forall>s \<in> set ss. s \<in> L r \<and> s \<noteq> []"
+  using Star_split by auto  
+  then obtain vs where "flats vs = s" "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> []"
+  using IH flats_Prf_value by metis 
+  then show "\<exists>v. \<Turnstile> v : STAR r \<and> flat v = s"
+  using Prf.intros(6) flat_Stars by blast
+next 
+  case (SEQ r1 r2 s)
+  then show "\<exists>v. \<Turnstile> v : SEQ r1 r2 \<and> flat v = s"
+  unfolding Sequ_def L.simps by (fastforce intro: Prf.intros)
+next
+  case (ALT r1 r2 s)
+  then show "\<exists>v. \<Turnstile> v : ALT r1 r2 \<and> flat v = s"
+  unfolding L.simps by (fastforce intro: Prf.intros)
+qed (auto intro: Prf.intros)
+
+
+lemma L_flat_Prf:
+  shows "L(r) = {flat v | v. \<Turnstile> v : r}"
+using L_flat_Prf1 L_flat_Prf2 by blast
+
+
+
+section \<open>Sets of Lexical Values\<close>
+
+text \<open>
+  Shows that lexical values are finite for a given regex and string.
+\<close>
+
+definition
+  LV :: "rexp \<Rightarrow> string \<Rightarrow> val set"
+where  "LV r s \<equiv> {v. \<Turnstile> v : r \<and> flat v = s}"
+
+lemma LV_simps:
+  shows "LV ZERO s = {}"
+  and   "LV ONE s = (if s = [] then {Void} else {})"
+  and   "LV (CH c) s = (if s = [c] then {Char c} else {})"
+  and   "LV (ALT r1 r2) s = Left ` LV r1 s \<union> Right ` LV r2 s"
+unfolding LV_def
+by (auto intro: Prf.intros elim: Prf.cases)
+
+
+abbreviation
+  "Prefixes s \<equiv> {s'. prefix s' s}"
+
+abbreviation
+  "Suffixes s \<equiv> {s'. suffix s' s}"
+
+abbreviation
+  "SSuffixes s \<equiv> {s'. strict_suffix s' s}"
+
+lemma Suffixes_cons [simp]:
+  shows "Suffixes (c # s) = Suffixes s \<union> {c # s}"
+by (auto simp add: suffix_def Cons_eq_append_conv)
+
+
+lemma finite_Suffixes: 
+  shows "finite (Suffixes s)"
+by (induct s) (simp_all)
+
+lemma finite_SSuffixes: 
+  shows "finite (SSuffixes s)"
+proof -
+  have "SSuffixes s \<subseteq> Suffixes s"
+   unfolding strict_suffix_def suffix_def by auto
+  then show "finite (SSuffixes s)"
+   using finite_Suffixes finite_subset by blast
+qed
+
+lemma finite_Prefixes: 
+  shows "finite (Prefixes s)"
+proof -
+  have "finite (Suffixes (rev s))" 
+    by (rule finite_Suffixes)
+  then have "finite (rev ` Suffixes (rev s))" by simp
+  moreover
+  have "rev ` (Suffixes (rev s)) = Prefixes s"
+  unfolding suffix_def prefix_def image_def
+   by (auto)(metis rev_append rev_rev_ident)+
+  ultimately show "finite (Prefixes s)" by simp
+qed
+
+lemma LV_STAR_finite:
+  assumes "\<forall>s. finite (LV r s)"
+  shows "finite (LV (STAR r) s)"
+proof(induct s rule: length_induct)
+  fix s::"char list"
+  assume "\<forall>s'. length s' < length s \<longrightarrow> finite (LV (STAR r) s')"
+  then have IH: "\<forall>s' \<in> SSuffixes s. finite (LV (STAR r) s')"
+    by (force simp add: strict_suffix_def suffix_def) 
+  define f where "f \<equiv> \<lambda>(v, vs). Stars (v # vs)"
+  define S1 where "S1 \<equiv> \<Union>s' \<in> Prefixes s. LV r s'"
+  define S2 where "S2 \<equiv> \<Union>s2 \<in> SSuffixes s. Stars -` (LV (STAR r) s2)"
+  have "finite S1" using assms
+    unfolding S1_def by (simp_all add: finite_Prefixes)
+  moreover 
+  with IH have "finite S2" unfolding S2_def
+    by (auto simp add: finite_SSuffixes inj_on_def finite_vimageI)
+  ultimately 
+  have "finite ({Stars []} \<union> f ` (S1 \<times> S2))" by simp
+  moreover 
+  have "LV (STAR r) s \<subseteq> {Stars []} \<union> f ` (S1 \<times> S2)" 
+  unfolding S1_def S2_def f_def
+  unfolding LV_def image_def prefix_def strict_suffix_def 
+  apply(auto)
+  apply(case_tac x)
+  apply(auto elim: Prf_elims)
+  apply(erule Prf_elims)
+  apply(auto)
+  apply(case_tac vs)
+  apply(auto intro: Prf.intros)  
+  apply(rule exI)
+  apply(rule conjI)
+  apply(rule_tac x="flat a" in exI)
+  apply(rule conjI)
+  apply(rule_tac x="flats list" in exI)
+  apply(simp)
+   apply(blast)
+  apply(simp add: suffix_def)
+  using Prf.intros(6) by blast  
+  ultimately
+  show "finite (LV (STAR r) s)" by (simp add: finite_subset)
+qed  
+    
+
+lemma LV_finite:
+  shows "finite (LV r s)"
+proof(induct r arbitrary: s)
+  case (ZERO s) 
+  show "finite (LV ZERO s)" by (simp add: LV_simps)
+next
+  case (ONE s)
+  show "finite (LV ONE s)" by (simp add: LV_simps)
+next
+  case (CH c s)
+  show "finite (LV (CH c) s)" by (simp add: LV_simps)
+next 
+  case (ALT r1 r2 s)
+  then show "finite (LV (ALT r1 r2) s)" by (simp add: LV_simps)
+next 
+  case (SEQ r1 r2 s)
+  define f where "f \<equiv> \<lambda>(v1, v2). Seq v1 v2"
+  define S1 where "S1 \<equiv> \<Union>s' \<in> Prefixes s. LV r1 s'"
+  define S2 where "S2 \<equiv> \<Union>s' \<in> Suffixes s. LV r2 s'"
+  have IHs: "\<And>s. finite (LV r1 s)" "\<And>s. finite (LV r2 s)" by fact+
+  then have "finite S1" "finite S2" unfolding S1_def S2_def
+    by (simp_all add: finite_Prefixes finite_Suffixes)
+  moreover
+  have "LV (SEQ r1 r2) s \<subseteq> f ` (S1 \<times> S2)"
+    unfolding f_def S1_def S2_def 
+    unfolding LV_def image_def prefix_def suffix_def
+    apply (auto elim!: Prf_elims)
+    by (metis (mono_tags, lifting) mem_Collect_eq)  
+  ultimately 
+  show "finite (LV (SEQ r1 r2) s)"
+    by (simp add: finite_subset)
+next
+  case (STAR r s)
+  then show "finite (LV (STAR r) s)" by (simp add: LV_STAR_finite)
+qed
+
+
+
+section \<open>Our inductive POSIX Definition\<close>
+
+inductive 
+  Posix :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100)
+where
+  Posix_ONE: "[] \<in> ONE \<rightarrow> Void"
+| Posix_CH: "[c] \<in> (CH c) \<rightarrow> (Char c)"
+| Posix_ALT1: "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)"
+| Posix_ALT2: "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)"
+| Posix_SEQ: "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
+    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow> 
+    (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
+| Posix_STAR1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
+    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
+    \<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)"
+| Posix_STAR2: "[] \<in> STAR r \<rightarrow> Stars []"
+
+inductive_cases Posix_elims:
+  "s \<in> ZERO \<rightarrow> v"
+  "s \<in> ONE \<rightarrow> v"
+  "s \<in> CH c \<rightarrow> v"
+  "s \<in> ALT r1 r2 \<rightarrow> v"
+  "s \<in> SEQ r1 r2 \<rightarrow> v"
+  "s \<in> STAR r \<rightarrow> v"
+
+lemma Posix1:
+  assumes "s \<in> r \<rightarrow> v"
+  shows "s \<in> L r" "flat v = s"
+using assms
+  by(induct s r v rule: Posix.induct)
+    (auto simp add: Sequ_def)
+
+text \<open>
+  For a give value and string, our Posix definition 
+  determines a unique value.
+\<close>
+
+lemma Posix_determ:
+  assumes "s \<in> r \<rightarrow> v1" "s \<in> r \<rightarrow> v2"
+  shows "v1 = v2"
+using assms
+proof (induct s r v1 arbitrary: v2 rule: Posix.induct)
+  case (Posix_ONE v2)
+  have "[] \<in> ONE \<rightarrow> v2" by fact
+  then show "Void = v2" by cases auto
+next 
+  case (Posix_CH c v2)
+  have "[c] \<in> CH c \<rightarrow> v2" by fact
+  then show "Char c = v2" by cases auto
+next 
+  case (Posix_ALT1 s r1 v r2 v2)
+  have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
+  moreover
+  have "s \<in> r1 \<rightarrow> v" by fact
+  then have "s \<in> L r1" by (simp add: Posix1)
+  ultimately obtain v' where eq: "v2 = Left v'" "s \<in> r1 \<rightarrow> v'" by cases auto 
+  moreover
+  have IH: "\<And>v2. s \<in> r1 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
+  ultimately have "v = v'" by simp
+  then show "Left v = v2" using eq by simp
+next 
+  case (Posix_ALT2 s r2 v r1 v2)
+  have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
+  moreover
+  have "s \<notin> L r1" by fact
+  ultimately obtain v' where eq: "v2 = Right v'" "s \<in> r2 \<rightarrow> v'" 
+    by cases (auto simp add: Posix1) 
+  moreover
+  have IH: "\<And>v2. s \<in> r2 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
+  ultimately have "v = v'" by simp
+  then show "Right v = v2" using eq by simp
+next
+  case (Posix_SEQ s1 r1 v1 s2 r2 v2 v')
+  have "(s1 @ s2) \<in> SEQ r1 r2 \<rightarrow> v'" 
+       "s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2"
+       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact+
+  then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \<in> r1 \<rightarrow> v1'" "s2 \<in> r2 \<rightarrow> v2'"
+  apply(cases) apply (auto simp add: append_eq_append_conv2)
+  using Posix1(1) by fastforce+
+  moreover
+  have IHs: "\<And>v1'. s1 \<in> r1 \<rightarrow> v1' \<Longrightarrow> v1 = v1'"
+            "\<And>v2'. s2 \<in> r2 \<rightarrow> v2' \<Longrightarrow> v2 = v2'" by fact+
+  ultimately show "Seq v1 v2 = v'" by simp
+next
+  case (Posix_STAR1 s1 r v s2 vs v2)
+  have "(s1 @ s2) \<in> STAR r \<rightarrow> v2" 
+       "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []"
+       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+
+  then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')"
+  apply(cases) apply (auto simp add: append_eq_append_conv2)
+  using Posix1(1) apply fastforce
+  apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2)
+  using Posix1(2) by blast
+  moreover
+  have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
+            "\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
+  ultimately show "Stars (v # vs) = v2" by auto
+next
+  case (Posix_STAR2 r v2)
+  have "[] \<in> STAR r \<rightarrow> v2" by fact
+  then show "Stars [] = v2" by cases (auto simp add: Posix1)
+qed
+
+
+text \<open>
+  Our POSIX values are lexical values.
+\<close>
+
+lemma Posix_LV:
+  assumes "s \<in> r \<rightarrow> v"
+  shows "v \<in> LV r s"
+  using assms unfolding LV_def
+  apply(induct rule: Posix.induct)
+  apply(auto simp add: intro!: Prf.intros elim!: Prf_elims)
+  done
+
+lemma Posix_Prf:
+  assumes "s \<in> r \<rightarrow> v"
+  shows "\<Turnstile> v : r"
+  using assms Posix_LV LV_def
+  by simp
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys3/RegLangs.thy	Wed Jun 29 12:38:05 2022 +0100
@@ -0,0 +1,237 @@
+
+theory RegLangs
+  imports Main "HOL-Library.Sublist"
+begin
+
+section \<open>Sequential Composition of Languages\<close>
+
+definition
+  Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
+where 
+  "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
+
+text \<open>Two Simple Properties about Sequential Composition\<close>
+
+lemma Sequ_empty_string [simp]:
+  shows "A ;; {[]} = A"
+  and   "{[]} ;; A = A"
+by (simp_all add: Sequ_def)
+
+lemma Sequ_empty [simp]:
+  shows "A ;; {} = {}"
+  and   "{} ;; A = {}"
+  by (simp_all add: Sequ_def)
+
+
+section \<open>Semantic Derivative (Left Quotient) of Languages\<close>
+
+definition
+  Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
+where
+  "Der c A \<equiv> {s. c # s \<in> A}"
+
+definition
+  Ders :: "string \<Rightarrow> string set \<Rightarrow> string set"
+where
+  "Ders s A \<equiv> {s'. s @ s' \<in> A}"
+
+lemma Der_null [simp]:
+  shows "Der c {} = {}"
+unfolding Der_def
+by auto
+
+lemma Der_empty [simp]:
+  shows "Der c {[]} = {}"
+unfolding Der_def
+by auto
+
+lemma Der_char [simp]:
+  shows "Der c {[d]} = (if c = d then {[]} else {})"
+unfolding Der_def
+by auto
+
+lemma Der_union [simp]:
+  shows "Der c (A \<union> B) = Der c A \<union> Der c B"
+unfolding Der_def
+by auto
+
+lemma Der_Sequ [simp]:
+  shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
+unfolding Der_def Sequ_def
+by (auto simp add: Cons_eq_append_conv)
+
+
+section \<open>Kleene Star for Languages\<close>
+
+inductive_set
+  Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
+  for A :: "string set"
+where
+  start[intro]: "[] \<in> A\<star>"
+| step[intro]:  "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
+
+(* Arden's lemma *)
+
+lemma Star_cases:
+  shows "A\<star> = {[]} \<union> A ;; A\<star>"
+unfolding Sequ_def
+by (auto) (metis Star.simps)
+
+lemma Star_decomp: 
+  assumes "c # x \<in> A\<star>" 
+  shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A\<star>"
+using assms
+by (induct x\<equiv>"c # x" rule: Star.induct) 
+   (auto simp add: append_eq_Cons_conv)
+
+lemma Star_Der_Sequ: 
+  shows "Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>"
+unfolding Der_def Sequ_def
+by(auto simp add: Star_decomp)
+
+
+lemma Der_star[simp]:
+  shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
+proof -    
+  have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"  
+    by (simp only: Star_cases[symmetric])
+  also have "... = Der c (A ;; A\<star>)"
+    by (simp only: Der_union Der_empty) (simp)
+  also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
+    by simp
+  also have "... =  (Der c A) ;; A\<star>"
+    using Star_Der_Sequ by auto
+  finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
+qed
+
+lemma Star_concat:
+  assumes "\<forall>s \<in> set ss. s \<in> A"  
+  shows "concat ss \<in> A\<star>"
+using assms by (induct ss) (auto)
+
+lemma Star_split:
+  assumes "s \<in> A\<star>"
+  shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])"
+using assms
+  apply(induct rule: Star.induct)
+  using concat.simps(1) apply fastforce
+  apply(clarify)
+  by (metis append_Nil concat.simps(2) set_ConsD)
+
+
+
+section \<open>Regular Expressions\<close>
+
+datatype rexp =
+  ZERO
+| ONE
+| CH char
+| SEQ rexp rexp
+| ALT rexp rexp
+| STAR rexp
+
+section \<open>Semantics of Regular Expressions\<close>
+ 
+fun
+  L :: "rexp \<Rightarrow> string set"
+where
+  "L (ZERO) = {}"
+| "L (ONE) = {[]}"
+| "L (CH c) = {[c]}"
+| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
+| "L (ALT r1 r2) = (L r1) \<union> (L r2)"
+| "L (STAR r) = (L r)\<star>"
+
+
+section \<open>Nullable, Derivatives\<close>
+
+fun
+ nullable :: "rexp \<Rightarrow> bool"
+where
+  "nullable (ZERO) = False"
+| "nullable (ONE) = True"
+| "nullable (CH c) = False"
+| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
+| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
+| "nullable (STAR r) = True"
+
+
+fun
+ der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
+where
+  "der c (ZERO) = ZERO"
+| "der c (ONE) = ZERO"
+| "der c (CH d) = (if c = d then ONE else ZERO)"
+| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
+| "der c (SEQ r1 r2) = 
+     (if nullable r1
+      then ALT (SEQ (der c r1) r2) (der c r2)
+      else SEQ (der c r1) r2)"
+| "der c (STAR r) = SEQ (der c r) (STAR r)"
+
+fun 
+ ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
+where
+  "ders [] r = r"
+| "ders (c # s) r = ders s (der c r)"
+
+
+lemma nullable_correctness:
+  shows "nullable r  \<longleftrightarrow> [] \<in> (L r)"
+by (induct r) (auto simp add: Sequ_def) 
+
+lemma der_correctness:
+  shows "L (der c r) = Der c (L r)"
+by (induct r) (simp_all add: nullable_correctness)
+
+lemma ders_correctness:
+  shows "L (ders s r) = Ders s (L r)"
+  by (induct s arbitrary: r)
+     (simp_all add: Ders_def der_correctness Der_def)
+
+lemma ders_append:
+  shows "ders (s1 @ s2) r = ders s2 (ders s1 r)"
+  by (induct s1 arbitrary: s2 r) (auto)
+
+lemma ders_snoc:
+  shows "ders (s @ [c]) r = der c (ders s r)"
+  by (simp add: ders_append)
+
+
+(*
+datatype ctxt = 
+    SeqC rexp bool
+  | AltCL rexp
+  | AltCH rexp 
+  | StarC rexp 
+
+function
+     down :: "char \<Rightarrow> rexp \<Rightarrow> ctxt list \<Rightarrow> rexp * ctxt list"
+and  up :: "char \<Rightarrow> rexp \<Rightarrow> ctxt list \<Rightarrow> rexp * ctxt list"
+where
+  "down c (SEQ r1 r2) ctxts =
+     (if (nullable r1) then down c r1 (SeqC r2 True # ctxts) 
+      else down c r1 (SeqC r2 False # ctxts))"
+| "down c (CH d) ctxts = 
+     (if c = d then up c ONE ctxts else up c ZERO ctxts)"
+| "down c ONE ctxts = up c ZERO ctxts"
+| "down c ZERO ctxts = up c ZERO ctxts"
+| "down c (ALT r1 r2) ctxts = down c r1 (AltCH r2 # ctxts)"
+| "down c (STAR r1) ctxts = down c r1 (StarC r1 # ctxts)"
+| "up c r [] = (r, [])"
+| "up c r (SeqC r2 False # ctxts) = up c (SEQ r r2) ctxts"
+| "up c r (SeqC r2 True # ctxts) = down c r2 (AltCL (SEQ r r2) # ctxts)"
+| "up c r (AltCL r1 # ctxts) = up c (ALT r1 r) ctxts"
+| "up c r (AltCH r2 # ctxts) = down c r2 (AltCL r # ctxts)"
+| "up c r (StarC r1 # ctxts) = up c (SEQ r (STAR r1)) ctxts"
+  apply(pat_completeness)
+  apply(auto)
+  done
+
+termination
+  sorry
+
+*)
+
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys3/RfltsRdistinctProps.thy	Wed Jun 29 12:38:05 2022 +0100
@@ -0,0 +1,355 @@
+theory RfltsRdistinctProps imports "Rsimp"
+begin
+
+
+
+lemma all_that_same_elem:
+  shows "\<lbrakk> a \<in> rset; rdistinct rs {a} = []\<rbrakk>
+       \<Longrightarrow> rdistinct (rs @ rsb) rset = rdistinct rsb rset"
+  apply(induct rs)
+   apply simp
+  apply(subgoal_tac "aa = a")
+   apply simp
+  by (metis empty_iff insert_iff list.discI rdistinct.simps(2))
+
+
+lemma rdistinct1:
+  assumes "a \<in> acc"
+  shows "a \<notin> set (rdistinct rs acc)"
+  using assms
+  apply(induct rs arbitrary: acc a)
+   apply(auto)
+  done
+
+
+lemma rdistinct_does_the_job:
+  shows "distinct (rdistinct rs s)"
+  apply(induct rs s rule: rdistinct.induct)
+  apply(auto simp add: rdistinct1)
+  done
+
+
+
+lemma rdistinct_concat:
+  assumes "set rs \<subseteq> rset"
+  shows "rdistinct (rs @ rsa) rset = rdistinct rsa rset"
+  using assms
+  apply(induct rs)
+  apply simp+
+  done
+
+lemma distinct_not_exist:
+  assumes "a \<notin> set rs"
+  shows "rdistinct rs rset = rdistinct rs (insert a rset)"
+  using assms
+  apply(induct rs arbitrary: rset)
+  apply(auto)
+  done
+
+lemma rdistinct_on_distinct:
+  shows "distinct rs \<Longrightarrow> rdistinct rs {} = rs"
+  apply(induct rs)
+  apply simp
+  using distinct_not_exist by fastforce
+
+lemma distinct_rdistinct_append:
+  assumes "distinct rs1" "\<forall>r \<in> set rs1. r \<notin> acc"
+  shows "rdistinct (rs1 @ rsa) acc = rs1 @ (rdistinct rsa (acc \<union> set rs1))"
+  using assms
+  apply(induct rs1 arbitrary: rsa acc)
+   apply(auto)[1]
+  apply(auto)[1]
+  apply(drule_tac x="rsa" in meta_spec)
+  apply(drule_tac x="{a} \<union> acc" in meta_spec)
+  apply(simp)
+  apply(drule meta_mp)
+   apply(auto)[1]
+  apply(simp)
+  done
+  
+
+lemma rdistinct_set_equality1:
+  shows "set (rdistinct rs acc) = set rs - acc"
+  apply(induct rs acc rule: rdistinct.induct)
+  apply(auto)
+  done
+
+
+lemma rdistinct_set_equality:
+  shows "set (rdistinct rs {}) = set rs"
+  by (simp add: rdistinct_set_equality1)
+
+
+
+lemma distinct_removes_last:
+  shows "\<lbrakk>a \<in> set as\<rbrakk>
+    \<Longrightarrow> rdistinct as rset = rdistinct (as @ [a]) rset"
+and "rdistinct (ab # as @ [ab]) rset1 = rdistinct (ab # as) rset1"
+   apply(induct as arbitrary: rset ab rset1 a)
+     apply simp
+    apply simp
+  apply(case_tac "aa \<in> rset")
+   apply(case_tac "a = aa")
+  apply (metis append_Cons)
+    apply simp
+   apply(case_tac "a \<in> set as")
+  apply (metis append_Cons rdistinct.simps(2) set_ConsD)
+   apply(case_tac "a = aa")
+    prefer 2
+    apply simp
+   apply (metis append_Cons)
+  apply(case_tac "ab \<in> rset1")
+  prefer 2
+   apply(subgoal_tac "rdistinct (ab # (a # as) @ [ab]) rset1 = 
+               ab # (rdistinct ((a # as) @ [ab]) (insert ab rset1))")
+  prefer 2
+  apply force
+  apply(simp only:)
+     apply(subgoal_tac "rdistinct (ab # a # as) rset1 = ab # (rdistinct (a # as) (insert ab rset1))")
+    apply(simp only:)
+    apply(subgoal_tac "rdistinct ((a # as) @ [ab]) (insert ab rset1) = rdistinct (a # as) (insert ab rset1)")
+     apply blast
+    apply(case_tac "a \<in> insert ab rset1")
+     apply simp
+     apply (metis insertI1)
+    apply simp
+    apply (meson insertI1)
+   apply simp
+  apply(subgoal_tac "rdistinct ((a # as) @ [ab]) rset1 = rdistinct (a # as) rset1")
+   apply simp
+  by (metis append_Cons insert_iff insert_is_Un rdistinct.simps(2))
+
+
+lemma distinct_removes_middle:
+  shows  "\<lbrakk>a \<in> set as\<rbrakk>
+    \<Longrightarrow> rdistinct (as @ as2) rset = rdistinct (as @ [a] @ as2) rset"
+and "rdistinct (ab # as @ [ab] @ as3) rset1 = rdistinct (ab # as @ as3) rset1"
+   apply(induct as arbitrary: rset rset1 ab as2 as3 a)
+     apply simp
+    apply simp
+   apply(case_tac "a \<in> rset")
+    apply simp
+    apply metis
+   apply simp
+   apply (metis insertI1)
+  apply(case_tac "a = ab")
+   apply simp
+   apply(case_tac "ab \<in> rset")
+    apply simp
+    apply presburger
+   apply (meson insertI1)
+  apply(case_tac "a \<in> rset")
+  apply (metis (no_types, opaque_lifting) Un_insert_left append_Cons insert_iff rdistinct.simps(2) sup_bot_left)
+  apply(case_tac "ab \<in> rset")
+  apply simp
+   apply (meson insert_iff)
+  apply simp
+  by (metis insertI1)
+
+
+lemma k0b:
+  assumes "nonalt r" "r \<noteq> RZERO"
+  shows "rflts [r] = [r]"
+  using assms
+  apply(case_tac  r)
+       apply(simp_all)
+  done
+
+lemma rflts_def_idiot:
+  shows "\<lbrakk> a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1\<rbrakk> \<Longrightarrow> rflts (a # rs) = a # rflts rs"
+  apply(case_tac a)
+  apply simp_all
+  done
+
+lemma flts_middle0:
+  shows "rflts (rsa @ RZERO # rsb) = rflts (rsa @ rsb)"
+  apply(induct rsa)
+  apply simp
+  by (metis append_Cons rflts.simps(2) rflts.simps(3) rflts_def_idiot)
+
+
+lemma flts_removes0:
+  shows "  rflts (rs @ [RZERO])  =
+           rflts rs"
+  apply(induct rs)
+   apply simp
+  by (metis append_Cons rflts.simps(2) rflts.simps(3) rflts_def_idiot)
+
+lemma rflts_spills_last:
+  shows "rflts (rs1 @ [RALTS rs]) = rflts rs1 @ rs"
+  apply (induct rs1 rule: rflts.induct)
+  apply(auto)
+  done
+
+lemma flts_keeps1:
+  shows "rflts (rs @ [RONE]) = rflts rs @ [RONE]"
+  apply (induct rs rule: rflts.induct)
+  apply(auto)
+  done
+
+lemma flts_keeps_others:
+  shows "\<lbrakk>a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1\<rbrakk> \<Longrightarrow>rflts (rs @ [a]) = rflts rs @ [a]"
+  apply(induct rs rule: rflts.induct)
+  apply(auto)
+  by (meson k0b nonalt.elims(3))
+
+lemma spilled_alts_contained:
+  shows "\<lbrakk>a = RALTS rs ; a \<in> set rs1\<rbrakk> \<Longrightarrow> \<forall>r \<in> set rs. r \<in> set (rflts rs1)"
+  apply(induct rs1)
+   apply simp 
+  apply(case_tac "a = aa")
+   apply simp
+  apply(subgoal_tac " a \<in> set rs1")
+  prefer 2
+   apply (meson set_ConsD)
+  apply(case_tac aa)
+  using rflts.simps(2) apply presburger
+      apply fastforce
+  apply fastforce
+  apply fastforce
+  apply fastforce
+  by fastforce
+
+
+lemma rflts_def_idiot2:
+  shows "\<lbrakk>a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1; a \<in> set rs\<rbrakk> \<Longrightarrow> a \<in> set (rflts rs)"
+  apply(induct rs rule: rflts.induct)
+  apply(auto)
+  done
+
+lemma flts_append:
+  shows "rflts (rs1 @ rs2) = rflts rs1 @ rflts rs2"
+  apply(induct rs1)
+   apply simp
+  apply(case_tac a)
+       apply simp+
+  done
+lemma distinct_removes_middle3:
+  shows  "\<lbrakk>a \<in> set as\<rbrakk>
+    \<Longrightarrow> rdistinct (as @ a #as2) rset = rdistinct (as @ as2) rset"
+  using distinct_removes_middle(1) by fastforce
+
+
+lemma distinct_removes_list:
+  shows "\<lbrakk> \<forall>r \<in> set rs. r \<in> set as\<rbrakk> \<Longrightarrow> rdistinct (as @ rs) {} = rdistinct as {}"
+  apply(induct rs)
+   apply simp+
+  apply(subgoal_tac "rdistinct (as @ a # rs) {} = rdistinct (as @ rs) {}")
+   prefer 2
+  apply (metis append_Cons append_Nil distinct_removes_middle(1))
+  by presburger
+
+lemma last_elem_out:
+  shows "\<lbrakk>x \<notin> set xs; x \<notin> rset \<rbrakk> \<Longrightarrow> rdistinct (xs @ [x]) rset = rdistinct xs rset @ [x]"
+  apply(induct xs arbitrary: rset)
+  apply simp+
+  done
+
+
+lemma rdistinct_concat_general:
+  shows "rdistinct (rs1 @ rs2) {} = (rdistinct rs1 {}) @ (rdistinct rs2 (set rs1))"
+  apply(induct rs1 arbitrary: rs2 rule: rev_induct)
+   apply simp
+  apply(drule_tac x = "x # rs2" in meta_spec)
+  apply simp
+  apply(case_tac "x \<in> set xs")
+   apply simp
+  
+   apply (simp add: distinct_removes_middle3 insert_absorb)
+  apply simp
+  by (simp add: last_elem_out)
+
+
+
+  
+lemma distinct_once_enough:
+  shows "rdistinct (rs @ rsa) {} = rdistinct (rdistinct rs {} @ rsa) {}"
+  apply(subgoal_tac "distinct (rdistinct rs {})")
+   apply(subgoal_tac 
+" rdistinct (rdistinct rs {} @ rsa) {} = rdistinct rs {} @ (rdistinct rsa (set rs))")
+  apply(simp only:)
+  using rdistinct_concat_general apply blast
+  apply (simp add: distinct_rdistinct_append rdistinct_set_equality1)
+  by (simp add: rdistinct_does_the_job)
+  
+
+
+
+lemma distinct_removes_duplicate_flts:
+  shows " a \<in> set rsa
+       \<Longrightarrow> rdistinct (rflts (map rsimp rsa @ [rsimp a])) {} =
+           rdistinct (rflts (map rsimp rsa)) {}"
+  apply(subgoal_tac "rsimp a \<in> set (map rsimp rsa)")
+  prefer 2
+   apply simp
+  apply(induct "rsimp a")
+       apply simp
+  using flts_removes0 apply presburger
+      apply(subgoal_tac " rdistinct (rflts (map rsimp rsa @ [rsimp a])) {} =  
+                          rdistinct (rflts (map rsimp rsa @ [RONE])) {}")
+      apply (simp only:)
+       apply(subst flts_keeps1)
+  apply (metis distinct_removes_last(1) rflts_def_idiot2 rrexp.simps(20) rrexp.simps(6))
+      apply presburger
+        apply(subgoal_tac " rdistinct (rflts (map rsimp rsa @ [rsimp a]))    {} =  
+                            rdistinct ((rflts (map rsimp rsa)) @ [RCHAR x]) {}")
+      apply (simp only:)
+      prefer 2
+      apply (metis flts_keeps_others rrexp.distinct(21) rrexp.distinct(3))
+  apply (metis distinct_removes_last(1) rflts_def_idiot2 rrexp.distinct(21) rrexp.distinct(3))
+
+    apply (metis distinct_removes_last(1) flts_keeps_others rflts_def_idiot2 rrexp.distinct(25) rrexp.distinct(5))
+   prefer 2
+   apply (metis distinct_removes_last(1) flts_keeps_others flts_removes0 rflts_def_idiot2 rrexp.distinct(29))
+  apply(subgoal_tac "rflts (map rsimp rsa @ [rsimp a]) = rflts (map rsimp rsa) @ x")
+  prefer 2
+  apply (simp add: rflts_spills_last)
+  apply(subgoal_tac "\<forall> r \<in> set x. r \<in> set (rflts (map rsimp rsa))")
+    prefer 2
+  apply (metis (mono_tags, lifting) image_iff image_set spilled_alts_contained)
+  apply (metis rflts_spills_last)
+  by (metis distinct_removes_list spilled_alts_contained)
+
+
+
+
+
+lemma distinct_early_app1:
+  shows "rset1 \<subseteq> rset \<Longrightarrow> rdistinct rs rset = rdistinct (rdistinct rs rset1) rset"
+  apply(induct rs arbitrary: rset rset1)
+   apply simp
+  apply simp
+  apply(case_tac "a \<in> rset1")
+   apply simp
+   apply(case_tac "a \<in> rset")
+    apply simp+
+  
+   apply blast
+  apply(case_tac "a \<in> rset1")
+   apply simp+
+  apply(case_tac "a \<in> rset")
+   apply simp
+   apply (metis insert_subsetI)
+  apply simp
+  by (meson insert_mono)
+
+
+lemma distinct_early_app:
+  shows " rdistinct (rs @ rsb) rset = rdistinct (rdistinct rs {} @ rsb) rset"
+  apply(induct rsb)
+   apply simp
+  using distinct_early_app1 apply blast
+  by (metis distinct_early_app1 distinct_once_enough empty_subsetI)
+
+
+lemma distinct_eq_interesting1:
+  shows "a \<in> rset \<Longrightarrow> rdistinct (rs @ rsb) rset = rdistinct (rdistinct (a # rs) {} @ rsb) rset"
+  apply(subgoal_tac "rdistinct (rdistinct (a # rs) {} @ rsb) rset = rdistinct (rdistinct rs {} @ rsb) rset")
+   apply(simp only:)
+  using distinct_early_app apply blast 
+  by (metis append_Cons distinct_early_app rdistinct.simps(2))
+
+
+
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys3/Rsimp.thy	Wed Jun 29 12:38:05 2022 +0100
@@ -0,0 +1,171 @@
+theory Rsimp imports "Lexer"
+begin
+
+datatype rrexp = 
+  RZERO
+| RONE 
+| RCHAR char
+| RSEQ rrexp rrexp
+| RALTS "rrexp list"
+| RSTAR rrexp
+
+abbreviation
+  "RALT r1 r2 \<equiv> RALTS [r1, r2]"
+
+
+fun
+  RL :: "rrexp \<Rightarrow> string set"
+where
+  "RL (RZERO) = {}"
+| "RL (RONE) = {[]}"
+| "RL (RCHAR c) = {[c]}"
+| "RL (RSEQ r1 r2) = (RL r1) ;; (RL r2)"
+| "RL (RALTS rs) = (\<Union> (set (map RL rs)))"
+| "RL (RSTAR r) = (RL r)\<star>"
+
+
+
+fun
+ rnullable :: "rrexp \<Rightarrow> bool"
+where
+  "rnullable (RZERO) = False"
+| "rnullable (RONE) = True"
+| "rnullable (RCHAR c) = False"
+| "rnullable (RALTS rs) = (\<exists>r \<in> set rs. rnullable r)"
+| "rnullable (RSEQ r1 r2) = (rnullable r1 \<and> rnullable r2)"
+| "rnullable (RSTAR r) = True"
+
+
+fun
+ rder :: "char \<Rightarrow> rrexp \<Rightarrow> rrexp"
+where
+  "rder c (RZERO) = RZERO"
+| "rder c (RONE) = RZERO"
+| "rder c (RCHAR d) = (if c = d then RONE else RZERO)"
+| "rder c (RALTS rs) = RALTS (map (rder c) rs)"
+| "rder c (RSEQ r1 r2) = 
+     (if rnullable r1
+      then RALT   (RSEQ (rder c r1) r2) (rder c r2)
+      else RSEQ   (rder c r1) r2)"
+| "rder c (RSTAR r) = RSEQ  (rder c r) (RSTAR r)"
+
+
+fun 
+  rders :: "rrexp \<Rightarrow> string \<Rightarrow> rrexp"
+where
+  "rders r [] = r"
+| "rders r (c#s) = rders (rder c r) s"
+
+fun rdistinct :: "'a list \<Rightarrow>'a set \<Rightarrow> 'a list"
+  where
+  "rdistinct [] acc = []"
+| "rdistinct (x#xs)  acc = 
+     (if x \<in> acc then rdistinct xs  acc 
+      else x # (rdistinct xs  ({x} \<union> acc)))"
+
+
+fun rflts :: "rrexp list \<Rightarrow> rrexp list"
+  where 
+  "rflts [] = []"
+| "rflts (RZERO # rs) = rflts rs"
+| "rflts ((RALTS rs1) # rs) = rs1 @ rflts rs"
+| "rflts (r1 # rs) = r1 # rflts rs"
+
+fun nonalt :: "rrexp \<Rightarrow> bool"
+  where
+  "nonalt (RALTS  rs) = False"
+| "nonalt r = True"
+
+fun rsimp_ALTs :: " rrexp list \<Rightarrow> rrexp"
+  where
+  "rsimp_ALTs  [] = RZERO"
+| "rsimp_ALTs [r] =  r"
+| "rsimp_ALTs rs = RALTS rs"
+
+fun rsimp_SEQ :: " rrexp \<Rightarrow> rrexp \<Rightarrow> rrexp"
+  where
+  "rsimp_SEQ  RZERO _ = RZERO"
+| "rsimp_SEQ  _ RZERO = RZERO"
+| "rsimp_SEQ RONE r2 = r2"
+| "rsimp_SEQ r1 r2 = RSEQ r1 r2"
+
+
+fun rsimp :: "rrexp \<Rightarrow> rrexp" 
+  where
+  "rsimp (RSEQ r1 r2) = rsimp_SEQ  (rsimp r1) (rsimp r2)"
+| "rsimp (RALTS rs) = rsimp_ALTs  (rdistinct (rflts (map rsimp rs))  {}) "
+| "rsimp r = r"
+
+
+fun 
+  rders_simp :: "rrexp \<Rightarrow> string \<Rightarrow> rrexp"
+where
+  "rders_simp r [] = r"
+| "rders_simp r (c#s) = rders_simp (rsimp (rder c r)) s"
+
+fun rsize :: "rrexp \<Rightarrow> nat" where
+  "rsize RZERO = 1"
+| "rsize (RONE) = 1" 
+| "rsize (RCHAR  c) = 1"
+| "rsize (RALTS  rs) = Suc (sum_list (map rsize rs))"
+| "rsize (RSEQ  r1 r2) = Suc (rsize r1 + rsize r2)"
+| "rsize (RSTAR  r) = Suc (rsize r)"
+
+abbreviation rsizes where
+  "rsizes rs \<equiv> sum_list (map rsize rs)"
+
+fun nonnested :: "rrexp \<Rightarrow> bool"
+  where
+  "nonnested (RALTS []) = True"
+| "nonnested (RALTS ((RALTS rs1) # rs2)) = False"
+| "nonnested (RALTS (r # rs2)) = nonnested (RALTS rs2)"
+| "nonnested r = True"
+
+
+fun good :: "rrexp \<Rightarrow> bool" where
+  "good RZERO = False"
+| "good (RONE) = True" 
+| "good (RCHAR c) = True"
+| "good (RALTS []) = False"
+| "good (RALTS [r]) = False"
+| "good (RALTS (r1 # r2 # rs)) = 
+    ((distinct ( (r1 # r2 # rs))) \<and>
+     (\<forall>r' \<in> set (r1 # r2 # rs). good r' \<and> nonalt r'))"
+| "good (RSEQ RZERO _) = False"
+| "good (RSEQ RONE _) = False"
+| "good (RSEQ  _ RZERO) = False"
+| "good (RSEQ r1 r2) = (good r1 \<and> good r2)"
+| "good (RSTAR r) = True"
+
+fun nonazero :: "rrexp \<Rightarrow> bool"
+  where
+  "nonazero RZERO = False"
+| "nonazero r = True"
+
+
+
+
+
+
+lemma basic_rsimp_SEQ_property1:
+  shows "rsimp_SEQ RONE r = r"
+  apply(induct r)
+       apply simp+
+  done
+
+
+lemma basic_rsimp_SEQ_property3:
+  shows "rsimp_SEQ r RZERO = RZERO"  
+  using rsimp_SEQ.elims by blast
+
+
+lemma rsimpalts_conscons:
+  shows "rsimp_ALTs (r1 # rsa @ r2 # rsb) = RALTS (r1 # rsa @ r2 # rsb)"
+  by (metis Nil_is_append_conv list.exhaust rsimp_ALTs.simps(3))
+
+lemma rsimp_alts_equal:
+  shows "rsimp_ALTs (rsa @ a # rsb @ a # rsc) = RALTS (rsa @ a # rsb @ a # rsc) "
+  by (metis append_Cons append_Nil neq_Nil_conv rsimpalts_conscons)
+
+
+end
\ No newline at end of file