thys3/PosixSpec.thy
changeset 556 c27f04bb2262
parent 495 f9cdc295ccf7
child 642 6c13f76c070b
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys3/PosixSpec.thy	Wed Jun 29 12:38:05 2022 +0100
@@ -0,0 +1,380 @@
+   
+theory PosixSpec
+  imports RegLangs
+begin
+
+section \<open>"Plain" Values\<close>
+
+datatype val = 
+  Void
+| Char char
+| Seq val val
+| Right val
+| Left val
+| Stars "val list"
+
+
+section \<open>The string behind a value\<close>
+
+fun 
+  flat :: "val \<Rightarrow> string"
+where
+  "flat (Void) = []"
+| "flat (Char c) = [c]"
+| "flat (Left v) = flat v"
+| "flat (Right v) = flat v"
+| "flat (Seq v1 v2) = (flat v1) @ (flat v2)"
+| "flat (Stars []) = []"
+| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" 
+
+abbreviation
+  "flats vs \<equiv> concat (map flat vs)"
+
+lemma flat_Stars [simp]:
+ "flat (Stars vs) = flats vs"
+by (induct vs) (auto)
+
+
+section \<open>Lexical Values\<close>
+
+inductive 
+  Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<Turnstile> _ : _" [100, 100] 100)
+where
+ "\<lbrakk>\<Turnstile> v1 : r1; \<Turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<Turnstile>  Seq v1 v2 : SEQ r1 r2"
+| "\<Turnstile> v1 : r1 \<Longrightarrow> \<Turnstile> Left v1 : ALT r1 r2"
+| "\<Turnstile> v2 : r2 \<Longrightarrow> \<Turnstile> Right v2 : ALT r1 r2"
+| "\<Turnstile> Void : ONE"
+| "\<Turnstile> Char c : CH c"
+| "\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> [] \<Longrightarrow> \<Turnstile> Stars vs : STAR r"
+
+inductive_cases Prf_elims:
+  "\<Turnstile> v : ZERO"
+  "\<Turnstile> v : SEQ r1 r2"
+  "\<Turnstile> v : ALT r1 r2"
+  "\<Turnstile> v : ONE"
+  "\<Turnstile> v : CH c"
+  "\<Turnstile> vs : STAR r"
+
+lemma Prf_Stars_appendE:
+  assumes "\<Turnstile> Stars (vs1 @ vs2) : STAR r"
+  shows "\<Turnstile> Stars vs1 : STAR r \<and> \<Turnstile> Stars vs2 : STAR r" 
+using assms
+by (auto intro: Prf.intros elim!: Prf_elims)
+
+
+lemma flats_Prf_value:
+  assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
+  shows "\<exists>vs. flats vs = concat ss \<and> (\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> [])"
+using assms
+apply(induct ss)
+apply(auto)
+apply(rule_tac x="[]" in exI)
+apply(simp)
+apply(case_tac "flat v = []")
+apply(rule_tac x="vs" in exI)
+apply(simp)
+apply(rule_tac x="v#vs" in exI)
+apply(simp)
+done
+
+
+lemma L_flat_Prf1:
+  assumes "\<Turnstile> v : r" 
+  shows "flat v \<in> L r"
+using assms
+by (induct) (auto simp add: Sequ_def Star_concat)
+
+lemma L_flat_Prf2:
+  assumes "s \<in> L r" 
+  shows "\<exists>v. \<Turnstile> v : r \<and> flat v = s"
+using assms
+proof(induct r arbitrary: s)
+  case (STAR r s)
+  have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
+  have "s \<in> L (STAR r)" by fact
+  then obtain ss where "concat ss = s" "\<forall>s \<in> set ss. s \<in> L r \<and> s \<noteq> []"
+  using Star_split by auto  
+  then obtain vs where "flats vs = s" "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> []"
+  using IH flats_Prf_value by metis 
+  then show "\<exists>v. \<Turnstile> v : STAR r \<and> flat v = s"
+  using Prf.intros(6) flat_Stars by blast
+next 
+  case (SEQ r1 r2 s)
+  then show "\<exists>v. \<Turnstile> v : SEQ r1 r2 \<and> flat v = s"
+  unfolding Sequ_def L.simps by (fastforce intro: Prf.intros)
+next
+  case (ALT r1 r2 s)
+  then show "\<exists>v. \<Turnstile> v : ALT r1 r2 \<and> flat v = s"
+  unfolding L.simps by (fastforce intro: Prf.intros)
+qed (auto intro: Prf.intros)
+
+
+lemma L_flat_Prf:
+  shows "L(r) = {flat v | v. \<Turnstile> v : r}"
+using L_flat_Prf1 L_flat_Prf2 by blast
+
+
+
+section \<open>Sets of Lexical Values\<close>
+
+text \<open>
+  Shows that lexical values are finite for a given regex and string.
+\<close>
+
+definition
+  LV :: "rexp \<Rightarrow> string \<Rightarrow> val set"
+where  "LV r s \<equiv> {v. \<Turnstile> v : r \<and> flat v = s}"
+
+lemma LV_simps:
+  shows "LV ZERO s = {}"
+  and   "LV ONE s = (if s = [] then {Void} else {})"
+  and   "LV (CH c) s = (if s = [c] then {Char c} else {})"
+  and   "LV (ALT r1 r2) s = Left ` LV r1 s \<union> Right ` LV r2 s"
+unfolding LV_def
+by (auto intro: Prf.intros elim: Prf.cases)
+
+
+abbreviation
+  "Prefixes s \<equiv> {s'. prefix s' s}"
+
+abbreviation
+  "Suffixes s \<equiv> {s'. suffix s' s}"
+
+abbreviation
+  "SSuffixes s \<equiv> {s'. strict_suffix s' s}"
+
+lemma Suffixes_cons [simp]:
+  shows "Suffixes (c # s) = Suffixes s \<union> {c # s}"
+by (auto simp add: suffix_def Cons_eq_append_conv)
+
+
+lemma finite_Suffixes: 
+  shows "finite (Suffixes s)"
+by (induct s) (simp_all)
+
+lemma finite_SSuffixes: 
+  shows "finite (SSuffixes s)"
+proof -
+  have "SSuffixes s \<subseteq> Suffixes s"
+   unfolding strict_suffix_def suffix_def by auto
+  then show "finite (SSuffixes s)"
+   using finite_Suffixes finite_subset by blast
+qed
+
+lemma finite_Prefixes: 
+  shows "finite (Prefixes s)"
+proof -
+  have "finite (Suffixes (rev s))" 
+    by (rule finite_Suffixes)
+  then have "finite (rev ` Suffixes (rev s))" by simp
+  moreover
+  have "rev ` (Suffixes (rev s)) = Prefixes s"
+  unfolding suffix_def prefix_def image_def
+   by (auto)(metis rev_append rev_rev_ident)+
+  ultimately show "finite (Prefixes s)" by simp
+qed
+
+lemma LV_STAR_finite:
+  assumes "\<forall>s. finite (LV r s)"
+  shows "finite (LV (STAR r) s)"
+proof(induct s rule: length_induct)
+  fix s::"char list"
+  assume "\<forall>s'. length s' < length s \<longrightarrow> finite (LV (STAR r) s')"
+  then have IH: "\<forall>s' \<in> SSuffixes s. finite (LV (STAR r) s')"
+    by (force simp add: strict_suffix_def suffix_def) 
+  define f where "f \<equiv> \<lambda>(v, vs). Stars (v # vs)"
+  define S1 where "S1 \<equiv> \<Union>s' \<in> Prefixes s. LV r s'"
+  define S2 where "S2 \<equiv> \<Union>s2 \<in> SSuffixes s. Stars -` (LV (STAR r) s2)"
+  have "finite S1" using assms
+    unfolding S1_def by (simp_all add: finite_Prefixes)
+  moreover 
+  with IH have "finite S2" unfolding S2_def
+    by (auto simp add: finite_SSuffixes inj_on_def finite_vimageI)
+  ultimately 
+  have "finite ({Stars []} \<union> f ` (S1 \<times> S2))" by simp
+  moreover 
+  have "LV (STAR r) s \<subseteq> {Stars []} \<union> f ` (S1 \<times> S2)" 
+  unfolding S1_def S2_def f_def
+  unfolding LV_def image_def prefix_def strict_suffix_def 
+  apply(auto)
+  apply(case_tac x)
+  apply(auto elim: Prf_elims)
+  apply(erule Prf_elims)
+  apply(auto)
+  apply(case_tac vs)
+  apply(auto intro: Prf.intros)  
+  apply(rule exI)
+  apply(rule conjI)
+  apply(rule_tac x="flat a" in exI)
+  apply(rule conjI)
+  apply(rule_tac x="flats list" in exI)
+  apply(simp)
+   apply(blast)
+  apply(simp add: suffix_def)
+  using Prf.intros(6) by blast  
+  ultimately
+  show "finite (LV (STAR r) s)" by (simp add: finite_subset)
+qed  
+    
+
+lemma LV_finite:
+  shows "finite (LV r s)"
+proof(induct r arbitrary: s)
+  case (ZERO s) 
+  show "finite (LV ZERO s)" by (simp add: LV_simps)
+next
+  case (ONE s)
+  show "finite (LV ONE s)" by (simp add: LV_simps)
+next
+  case (CH c s)
+  show "finite (LV (CH c) s)" by (simp add: LV_simps)
+next 
+  case (ALT r1 r2 s)
+  then show "finite (LV (ALT r1 r2) s)" by (simp add: LV_simps)
+next 
+  case (SEQ r1 r2 s)
+  define f where "f \<equiv> \<lambda>(v1, v2). Seq v1 v2"
+  define S1 where "S1 \<equiv> \<Union>s' \<in> Prefixes s. LV r1 s'"
+  define S2 where "S2 \<equiv> \<Union>s' \<in> Suffixes s. LV r2 s'"
+  have IHs: "\<And>s. finite (LV r1 s)" "\<And>s. finite (LV r2 s)" by fact+
+  then have "finite S1" "finite S2" unfolding S1_def S2_def
+    by (simp_all add: finite_Prefixes finite_Suffixes)
+  moreover
+  have "LV (SEQ r1 r2) s \<subseteq> f ` (S1 \<times> S2)"
+    unfolding f_def S1_def S2_def 
+    unfolding LV_def image_def prefix_def suffix_def
+    apply (auto elim!: Prf_elims)
+    by (metis (mono_tags, lifting) mem_Collect_eq)  
+  ultimately 
+  show "finite (LV (SEQ r1 r2) s)"
+    by (simp add: finite_subset)
+next
+  case (STAR r s)
+  then show "finite (LV (STAR r) s)" by (simp add: LV_STAR_finite)
+qed
+
+
+
+section \<open>Our inductive POSIX Definition\<close>
+
+inductive 
+  Posix :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100)
+where
+  Posix_ONE: "[] \<in> ONE \<rightarrow> Void"
+| Posix_CH: "[c] \<in> (CH c) \<rightarrow> (Char c)"
+| Posix_ALT1: "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)"
+| Posix_ALT2: "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)"
+| Posix_SEQ: "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
+    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow> 
+    (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
+| Posix_STAR1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
+    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
+    \<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)"
+| Posix_STAR2: "[] \<in> STAR r \<rightarrow> Stars []"
+
+inductive_cases Posix_elims:
+  "s \<in> ZERO \<rightarrow> v"
+  "s \<in> ONE \<rightarrow> v"
+  "s \<in> CH c \<rightarrow> v"
+  "s \<in> ALT r1 r2 \<rightarrow> v"
+  "s \<in> SEQ r1 r2 \<rightarrow> v"
+  "s \<in> STAR r \<rightarrow> v"
+
+lemma Posix1:
+  assumes "s \<in> r \<rightarrow> v"
+  shows "s \<in> L r" "flat v = s"
+using assms
+  by(induct s r v rule: Posix.induct)
+    (auto simp add: Sequ_def)
+
+text \<open>
+  For a give value and string, our Posix definition 
+  determines a unique value.
+\<close>
+
+lemma Posix_determ:
+  assumes "s \<in> r \<rightarrow> v1" "s \<in> r \<rightarrow> v2"
+  shows "v1 = v2"
+using assms
+proof (induct s r v1 arbitrary: v2 rule: Posix.induct)
+  case (Posix_ONE v2)
+  have "[] \<in> ONE \<rightarrow> v2" by fact
+  then show "Void = v2" by cases auto
+next 
+  case (Posix_CH c v2)
+  have "[c] \<in> CH c \<rightarrow> v2" by fact
+  then show "Char c = v2" by cases auto
+next 
+  case (Posix_ALT1 s r1 v r2 v2)
+  have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
+  moreover
+  have "s \<in> r1 \<rightarrow> v" by fact
+  then have "s \<in> L r1" by (simp add: Posix1)
+  ultimately obtain v' where eq: "v2 = Left v'" "s \<in> r1 \<rightarrow> v'" by cases auto 
+  moreover
+  have IH: "\<And>v2. s \<in> r1 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
+  ultimately have "v = v'" by simp
+  then show "Left v = v2" using eq by simp
+next 
+  case (Posix_ALT2 s r2 v r1 v2)
+  have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
+  moreover
+  have "s \<notin> L r1" by fact
+  ultimately obtain v' where eq: "v2 = Right v'" "s \<in> r2 \<rightarrow> v'" 
+    by cases (auto simp add: Posix1) 
+  moreover
+  have IH: "\<And>v2. s \<in> r2 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
+  ultimately have "v = v'" by simp
+  then show "Right v = v2" using eq by simp
+next
+  case (Posix_SEQ s1 r1 v1 s2 r2 v2 v')
+  have "(s1 @ s2) \<in> SEQ r1 r2 \<rightarrow> v'" 
+       "s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2"
+       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact+
+  then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \<in> r1 \<rightarrow> v1'" "s2 \<in> r2 \<rightarrow> v2'"
+  apply(cases) apply (auto simp add: append_eq_append_conv2)
+  using Posix1(1) by fastforce+
+  moreover
+  have IHs: "\<And>v1'. s1 \<in> r1 \<rightarrow> v1' \<Longrightarrow> v1 = v1'"
+            "\<And>v2'. s2 \<in> r2 \<rightarrow> v2' \<Longrightarrow> v2 = v2'" by fact+
+  ultimately show "Seq v1 v2 = v'" by simp
+next
+  case (Posix_STAR1 s1 r v s2 vs v2)
+  have "(s1 @ s2) \<in> STAR r \<rightarrow> v2" 
+       "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []"
+       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+
+  then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')"
+  apply(cases) apply (auto simp add: append_eq_append_conv2)
+  using Posix1(1) apply fastforce
+  apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2)
+  using Posix1(2) by blast
+  moreover
+  have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
+            "\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
+  ultimately show "Stars (v # vs) = v2" by auto
+next
+  case (Posix_STAR2 r v2)
+  have "[] \<in> STAR r \<rightarrow> v2" by fact
+  then show "Stars [] = v2" by cases (auto simp add: Posix1)
+qed
+
+
+text \<open>
+  Our POSIX values are lexical values.
+\<close>
+
+lemma Posix_LV:
+  assumes "s \<in> r \<rightarrow> v"
+  shows "v \<in> LV r s"
+  using assms unfolding LV_def
+  apply(induct rule: Posix.induct)
+  apply(auto simp add: intro!: Prf.intros elim!: Prf_elims)
+  done
+
+lemma Posix_Prf:
+  assumes "s \<in> r \<rightarrow> v"
+  shows "\<Turnstile> v : r"
+  using assms Posix_LV LV_def
+  by simp
+
+end