--- a/TODO Wed May 17 12:10:27 2017 +0100
+++ b/TODO Fri Jun 23 00:27:53 2017 +0100
@@ -1,5 +1,7 @@
+Not-regular expressions & derivatives
+http://www.dcc.fc.up.pt/dcc/Pubs/TReports/TR13/dcc-2013-11.pdf
-
+http://www.home.hs-karlsruhe.de/~suma0002/publications/cc14-flexible-lexing-via-extended-regex.pdf
Regular Path Queries & regular expressions
@@ -23,3 +25,7 @@
http://www.arl.wustl.edu/~pcrowley/
http://regex.wustl.edu/index.php/Regular_Expression_Processor
+
+
+Contextfree expressions
+https://arxiv.org/pdf/1610.06832.pdf
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/progs/scala/positions.scala Fri Jun 23 00:27:53 2017 +0100
@@ -0,0 +1,155 @@
+import scala.annotation.tailrec
+import scala.language.implicitConversions
+import scala.language.reflectiveCalls
+
+
+abstract class Rexp
+case object ZERO extends Rexp
+case object ONE extends Rexp
+case class CHAR(c: Char) extends Rexp
+case class ALT(r1: Rexp, r2: Rexp) extends Rexp
+case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
+case class STAR(r: Rexp) extends Rexp
+
+// some convenience for typing in regular expressions
+def charlist2rexp(s : List[Char]): Rexp = s match {
+ case Nil => ONE
+ case c::Nil => CHAR(c)
+ case c::s => SEQ(CHAR(c), charlist2rexp(s))
+}
+implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
+
+implicit def RexpOps(r: Rexp) = new {
+ def | (s: Rexp) = ALT(r, s)
+ def % = STAR(r)
+ def ~ (s: Rexp) = SEQ(r, s)
+}
+
+implicit def stringOps(s: String) = new {
+ def | (r: Rexp) = ALT(s, r)
+ def | (r: String) = ALT(s, r)
+ def % = STAR(s)
+ def ~ (r: Rexp) = SEQ(s, r)
+ def ~ (r: String) = SEQ(s, r)
+}
+
+// enumerates regular expressions until a certain depth
+// using the characters in the string
+def generate(n: Int, s: String) : Set[Rexp] = n match {
+ case 0 => Set(ZERO, ONE) ++ s.toSet.map(CHAR)
+ case n => {
+ val rs = generate(n - 1, s)
+ rs ++
+ (for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) ++
+ (for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) ++
+ (for (r <- rs) yield STAR(r))
+ }
+}
+
+
+
+abstract class Val
+case object Empty extends Val
+case class Chr(c: Char) extends Val
+case class Sequ(v1: Val, v2: Val) extends Val
+case class Left(v: Val) extends Val
+case class Right(v: Val) extends Val
+case class Stars(vs: List[Val]) extends Val
+
+
+
+// extracts a string from value
+def flatten(v: Val) : String = v match {
+ case Empty => ""
+ case Chr(c) => c.toString
+ case Left(v) => flatten(v)
+ case Right(v) => flatten(v)
+ case Sequ(v1, v2) => flatten(v1) + flatten(v2)
+ case Stars(vs) => vs.map(flatten).mkString
+}
+
+def flat_len(v: Val) : Int = flatten(v).length
+
+// extracts a set of candidate values from a "non-starred" regular expression
+def values(r: Rexp) : Set[Val] = r match {
+ case ZERO => Set()
+ case ONE => Set(Empty)
+ case CHAR(c) => Set(Chr(c))
+ case ALT(r1, r2) => values(r1).map(Left(_)) ++ values(r2).map(Right(_))
+ case SEQ(r1, r2) => for (v1 <- values(r1); v2 <- values(r2)) yield Sequ(v1, v2)
+ case STAR(r) => values(r).map(v => Stars(List(v))) ++ Set(Stars(Nil))
+ // to do much more would cause the set to be infinite
+}
+
+
+def values_str(r: Rexp, s: String) : Set[Val] =
+ values(r).filter(flatten(_) == s)
+
+val List(val1, val2) = values_str(("ab" | "a") ~ ("c" | "bc"), "abc").toList
+
+// Position
+type Pos = List[Int]
+
+
+def positions(v: Val) : Set[Pos] = v match {
+ case Empty => Set(Nil)
+ case Chr(c) => Set(Nil)
+ case Left(v) => Set(Nil) ++ positions(v).map(0::_)
+ case Right(v) => Set(Nil) ++ positions(v).map(1::_)
+ case Sequ(v1, v2) => Set(Nil) ++ positions(v1).map(0::_) ++ positions(v2).map(1::_)
+ case Stars(vs) => Set(Nil) ++ vs.zipWithIndex.flatMap{ case (v, n) => positions(v).map(n::_) }
+}
+
+val v1 = Sequ(Chr('a'), Chr('b'))
+val ps1 = positions(v1)
+val ps1L = positions(Left(v1))
+val ps1R = positions(Right(v1))
+
+val v3 = Stars(List(Left(Chr('x')), Right(Left(Chr('y')))))
+val v4 = Stars(List(Right(Right(Sequ(Chr('x'), Chr('y'))))))
+
+val ps3 = positions(v3)
+val ps4 = positions(v4)
+
+def at(v: Val, ps: List[Int]) : Val = (v, ps) match {
+ case (v, Nil) => v
+ case (Left(v), 0::ps) => at(v, ps)
+ case (Right(v), 1::ps) => at(v, ps)
+ case (Sequ(v1, v2), 0::ps) => at(v1, ps)
+ case (Sequ(v1, v2), 1::ps) => at(v2, ps)
+ case (Stars(vs), n::ps) => at(vs(n), ps)
+}
+
+ps1.map(at(v1, _))
+ps1L.map(at(Left(v1), _))
+ps1R.map(at(Right(v1), _))
+
+
+def pflat_len(v: Val, p: Pos) : Int =
+ if (positions(v) contains p) flat_len(at(v, p)) else -1
+
+
+// for lexicographic list-orderings
+import scala.math.Ordering.Implicits._
+
+def smaller_than(pss: Set[Pos], ps: Pos) : Set[Pos] =
+ pss.filter(_ < ps)
+
+
+// order from the alternative posix paper
+def ordr(v1: Val, p: List[Int], v2: Val) : Boolean = {
+ pflat_len(v1, p) > pflat_len(v2, p) &&
+ smaller_than(positions(v1) | positions(v2), p).forall(q => pflat_len(v1, q) == pflat_len(v2, q))
+}
+
+//tests
+val List(val1, val2) = values_str(("ab" | "a") ~ ("c" | "bc"), "abc").toList
+
+positions(val1).map(p => (p, ordr(val1, p, val2))).filter{ case (_, b) => b == true }
+positions(val1)
+at(val1, List(0))
+
+smaller_than(positions(val1), List(1, 0))
+
+val List(val1, val2) = values_str("a" ~ (("ab" | "a") ~ ("c" | "bc")), "aabc").toList
+positions(val2).map(p => (p, ordr(val2, p, val1))).filter{ case (_, b) => b == true }
--- a/progs/scala/tests.scala Wed May 17 12:10:27 2017 +0100
+++ b/progs/scala/tests.scala Fri Jun 23 00:27:53 2017 +0100
@@ -32,7 +32,47 @@
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
+
+def Pos(v: Val) : Set[List[Int]] = v match {
+ case Empty => Set(Nil)
+ case Chr(c) => Set(Nil)
+ case Left(v) => Set(Nil) ++ Pos(v).map(0::_)
+ case Right(v) => Set(Nil) ++ Pos(v).map(1::_)
+ case Sequ(v1, v2) => Set(Nil) ++ Pos(v1).map(0::_) ++ Pos(v2).map(1::_)
+ case Stars(vs) => Set(Nil) ++ vs.zipWithIndex.map{ case (v, n) => n::Pos(v) }
+}
+
+val v1 = Sequ(Chr('a'), Chr('b'))
+val ps1 = Pos(v1)
+
+val v2 = Left(Sequ(Chr('a'), Chr('b')))
+val ps2 = Pos(v2)
+
+val v3 = Stars(List(Left(Chr('x')), Right(Left(Chr('y')))))
+val v4 = Stars(List(Right(Right(Sequ(Chr('x'), Chr('y'))))))
+
+val ps3 = Pos(v3)
+val ps4 = Pos(v4)
+
+def At(v: Val, ps: List[Int]) : Val = (v, ps) match {
+ case (v, Nil) => v
+ case (Left(v), 0::ps) => At(v, ps)
+ case (Right(v), 1::ps) => At(v, ps)
+ case (Sequ(v1, v2), 0::ps) => At(v1, ps)
+ case (Sequ(v1, v2), 1::ps) => At(v2, ps)
+ case (Stars(vs), n::ps) => At(vs(n), ps)
+}
+
+ps1.map(At(v1, _))
+ps2.map(At(v2, _))
+
+import scala.math.Ordering.Implicits._
+ps1.toList.sorted
+
+List(List(1, 1), List(1), List(0, 1)).sorted
+
+
// nullable function: tests whether the regular
// expression can recognise the empty string
def nullable (r: Rexp) : Boolean = r match {
--- a/thys/Sulzmann.thy Wed May 17 12:10:27 2017 +0100
+++ b/thys/Sulzmann.thy Fri Jun 23 00:27:53 2017 +0100
@@ -6,19 +6,1626 @@
section {* Sulzmann's "Ordering" of Values *}
+fun
+ size :: "val \<Rightarrow> nat"
+where
+ "size (Void) = 0"
+| "size (Char c) = 0"
+| "size (Left v) = 1 + size v"
+| "size (Right v) = 1 + size v"
+| "size (Seq v1 v2) = 1 + (size v1) + (size v2)"
+| "size (Stars []) = 0"
+| "size (Stars (v#vs)) = 1 + (size v) + (size (Stars vs))"
-inductive ValOrd :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ >_ _" [100, 100, 100] 100)
+lemma Star_size [simp]:
+ "\<lbrakk>n < length vs; 0 < length vs\<rbrakk> \<Longrightarrow> size (nth vs n) < size (Stars vs)"
+apply(induct vs arbitrary: n)
+apply(simp)
+apply(auto)
+by (metis One_nat_def Suc_pred less_Suc0 less_Suc_eq list.size(3) not_add_less1 not_less_eq nth_Cons' trans_less_add2)
+
+lemma Star_size0 [simp]:
+ "0 < length vs \<Longrightarrow> 0 < size (Stars vs)"
+apply(induct vs)
+apply(auto)
+done
+
+
+fun
+ at :: "val \<Rightarrow> nat list \<Rightarrow> val"
+where
+ "at v [] = v"
+| "at (Left v) (0#ps)= at v ps"
+| "at (Right v) (Suc 0#ps)= at v ps"
+| "at (Seq v1 v2) (0#ps)= at v1 ps"
+| "at (Seq v1 v2) (Suc 0#ps)= at v2 ps"
+| "at (Stars vs) (n#ps)= at (nth vs n) ps"
+
+fun
+ ato :: "val \<Rightarrow> nat list \<Rightarrow> val option"
+where
+ "ato v [] = Some v"
+| "ato (Left v) (0#ps)= ato v ps"
+| "ato (Right v) (Suc 0#ps)= ato v ps"
+| "ato (Seq v1 v2) (0#ps)= ato v1 ps"
+| "ato (Seq v1 v2) (Suc 0#ps)= ato v2 ps"
+| "ato (Stars vs) (n#ps)= (if (n < length vs) then ato (nth vs n) ps else None)"
+| "ato v p = None"
+
+fun Pos :: "val \<Rightarrow> (nat list) set"
+where
+ "Pos (Void) = {[]}"
+| "Pos (Char c) = {[]}"
+| "Pos (Left v) = {[]} \<union> {0#ps | ps. ps \<in> Pos v}"
+| "Pos (Right v) = {[]} \<union> {1#ps | ps. ps \<in> Pos v}"
+| "Pos (Seq v1 v2) = {[]} \<union> {0#ps | ps. ps \<in> Pos v1} \<union> {1#ps | ps. ps \<in> Pos v2}"
+| "Pos (Stars []) = {[]}"
+| "Pos (Stars (v#vs)) = {[]} \<union> {0#ps | ps. ps \<in> Pos v} \<union> {(Suc n)#ps | n ps. n#ps \<in> Pos (Stars vs)}"
+
+lemma Pos_empty:
+ shows "[] \<in> Pos v"
+apply(induct v rule: Pos.induct)
+apply(auto)
+done
+
+lemma Pos_finite_aux:
+ assumes "\<forall>v \<in> set vs. finite (Pos v)"
+ shows "finite (Pos (Stars vs))"
+using assms
+apply(induct vs)
+apply(simp)
+apply(simp)
+apply(subgoal_tac "finite (Pos (Stars vs) - {[]})")
+apply(rule_tac f="\<lambda>l. Suc (hd l) # tl l" in finite_surj)
+apply(assumption)
+back
+apply(auto simp add: image_def)
+apply(rule_tac x="n#ps" in bexI)
+apply(simp)
+apply(simp)
+done
+
+lemma Pos_finite:
+ shows "finite (Pos v)"
+apply(induct v rule: val.induct)
+apply(auto)
+apply(simp add: Pos_finite_aux)
+done
+
+
+lemma ato_test:
+ assumes "p \<in> Pos v"
+ shows "\<exists>v'. ato v p = Some v'"
+using assms
+apply(induct v arbitrary: p rule: Pos.induct)
+apply(auto)
+apply force
+by (metis ato.simps(6) option.distinct(1))
+
+definition pflat :: "val \<Rightarrow> nat list => string option"
+where
+ "pflat v p \<equiv> (if p \<in> Pos v then Some (flat (at v p)) else None)"
+
+fun intlen :: "'a list \<Rightarrow> int"
+where
+ "intlen [] = 0"
+| "intlen (x#xs) = 1 + intlen xs"
+
+lemma inlen_bigger:
+ shows "0 \<le> intlen xs"
+apply(induct xs)
+apply(auto)
+done
+
+lemma intlen_append:
+ shows "intlen (xs @ ys) = intlen xs + intlen ys"
+apply(induct xs arbitrary: ys)
+apply(auto)
+done
+
+lemma intlen_length:
+ assumes "length xs < length ys"
+ shows "intlen xs < intlen ys"
+using assms
+apply(induct xs arbitrary: ys)
+apply(auto)
+apply(case_tac ys)
+apply(simp_all)
+apply (smt inlen_bigger)
+by (smt Suc_lessE intlen.simps(2) length_Suc_conv)
+
+
+definition pflat_len :: "val \<Rightarrow> nat list => int"
+where
+ "pflat_len v p \<equiv> (if p \<in> Pos v then intlen (flat (at v p)) else -1)"
+
+lemma pflat_len_simps:
+ shows "pflat_len (Seq v1 v2) (0#p) = pflat_len v1 p"
+ and "pflat_len (Seq v1 v2) (Suc 0#p) = pflat_len v2 p"
+ and "pflat_len (Left v) (0#p) = pflat_len v p"
+ and "pflat_len (Left v) (Suc 0#p) = -1"
+ and "pflat_len (Right v) (Suc 0#p) = pflat_len v p"
+ and "pflat_len (Right v) (0#p) = -1"
+ and "pflat_len v [] = intlen (flat v)"
+apply(auto simp add: pflat_len_def Pos_empty)
+done
+
+lemma pflat_len_Stars_simps:
+ assumes "n < length vs"
+ shows "pflat_len (Stars vs) (n#p) = pflat_len (vs!n) p"
+using assms
+apply(induct vs arbitrary: n p)
+apply(simp)
+apply(simp)
+apply(simp add: pflat_len_def)
+apply(auto)[1]
+apply (metis at.simps(6))
+apply (metis Suc_less_eq Suc_pred)
+by (metis diff_Suc_1 less_Suc_eq_0_disj nth_Cons')
+
+
+lemma Two_to_Three_aux:
+ assumes "p \<in> Pos v1 \<union> Pos v2" "pflat_len v1 p = pflat_len v2 p"
+ shows "p \<in> Pos v1 \<inter> Pos v2"
+using assms
+apply(simp add: pflat_len_def)
+apply(auto split: if_splits)
+apply (smt inlen_bigger)+
+done
+
+lemma Two_to_Three:
+ assumes "\<forall>p \<in> Pos v1 \<union> Pos v2. pflat v1 p = pflat v2 p"
+ shows "Pos v1 = Pos v2"
+using assms
+by (metis Un_iff option.distinct(1) pflat_def subsetI subset_antisym)
+
+lemma Two_to_Three_orig:
+ assumes "\<forall>p \<in> Pos v1 \<union> Pos v2. pflat_len v1 p = pflat_len v2 p"
+ shows "Pos v1 = Pos v2"
+using assms
+by (metis Un_iff inlen_bigger neg_0_le_iff_le not_one_le_zero pflat_len_def subsetI subset_antisym)
+
+lemma set_eq1:
+ assumes "insert [] A = insert [] B" "[] \<notin> A" "[] \<notin> B"
+ shows "A = B"
+using assms
+by (simp add: insert_ident)
+
+lemma set_eq2:
+ assumes "A \<union> B = A \<union> C"
+ and "A \<inter> B = {}" "A \<inter> C = {}"
+ shows "B = C"
+using assms
+using Un_Int_distrib sup_bot.left_neutral sup_commute by blast
+
+
+
+lemma Three_to_One:
+ assumes "\<turnstile> v1 : r" "\<turnstile> v2 : r"
+ and "Pos v1 = Pos v2"
+ shows "v1 = v2"
+using assms
+apply(induct v1 arbitrary: r v2 rule: Pos.induct)
+apply(erule Prf.cases)
+apply(simp_all)
+apply(erule Prf.cases)
+apply(simp_all)
+apply(erule Prf.cases)
+apply(simp_all)
+apply(erule Prf.cases)
+apply(simp_all)
+apply(erule Prf.cases)
+apply(simp_all)
+apply(erule Prf.cases)
+apply(simp_all)
+apply(clarify)
+apply(simp add: insert_ident)
+apply(drule_tac x="r1a" in meta_spec)
+apply(drule_tac x="v1a" in meta_spec)
+apply(simp)
+apply(drule_tac meta_mp)
+thm subset_antisym
+apply(rule subset_antisym)
+apply(auto)[3]
+apply(clarify)
+apply(simp add: insert_ident)
+using Pos_empty apply blast
+apply(erule Prf.cases)
+apply(simp_all)
+apply(erule Prf.cases)
+apply(simp_all)
+apply(clarify)
+apply(simp add: insert_ident)
+using Pos_empty apply blast
+apply(simp add: insert_ident)
+apply(drule_tac x="r2a" in meta_spec)
+apply(drule_tac x="v2b" in meta_spec)
+apply(simp)
+apply(drule_tac meta_mp)
+apply(rule subset_antisym)
+apply(auto)[3]
+apply(erule Prf.cases)
+apply(simp_all)
+apply(erule Prf.cases)
+apply(simp_all)
+apply(simp add: insert_ident)
+apply(clarify)
+apply(drule_tac x="r1a" in meta_spec)
+apply(drule_tac x="r2a" in meta_spec)
+apply(drule_tac x="v1b" in meta_spec)
+apply(drule_tac x="v2c" in meta_spec)
+apply(simp)
+apply(drule_tac meta_mp)
+apply(rule subset_antisym)
+apply(rule subsetI)
+apply(subgoal_tac "0 # x \<in> {0 # ps |ps. ps \<in> Pos v1a}")
+prefer 2
+apply(auto)[1]
+apply(subgoal_tac "0 # x \<in> {0 # ps |ps. ps \<in> Pos v1b} \<union> {Suc 0 # ps |ps. ps \<in> Pos v2c}")
+prefer 2
+apply (metis (no_types, lifting) Un_iff)
+apply(simp)
+apply(rule subsetI)
+apply(subgoal_tac "0 # x \<in> {0 # ps |ps. ps \<in> Pos v1b}")
+prefer 2
+apply(auto)[1]
+apply(subgoal_tac "0 # x \<in> {0 # ps |ps. ps \<in> Pos v1a} \<union> {Suc 0 # ps |ps. ps \<in> Pos v2b}")
+prefer 2
+apply (metis (no_types, lifting) Un_iff)
+apply(simp (no_asm_use))
+apply(simp)
+apply(drule_tac meta_mp)
+apply(rule subset_antisym)
+apply(rule subsetI)
+apply(subgoal_tac "Suc 0 # x \<in> {Suc 0 # ps |ps. ps \<in> Pos v2b}")
+prefer 2
+apply(auto)[1]
+apply(subgoal_tac "Suc 0 # x \<in> {0 # ps |ps. ps \<in> Pos v1b} \<union> {Suc 0 # ps |ps. ps \<in> Pos v2c}")
+prefer 2
+apply (metis (no_types, lifting) Un_iff)
+apply(simp)
+apply(rule subsetI)
+apply(subgoal_tac "Suc 0 # x \<in> {Suc 0 # ps |ps. ps \<in> Pos v2c}")
+prefer 2
+apply(auto)[1]
+apply(subgoal_tac "Suc 0 # x \<in> {0 # ps |ps. ps \<in> Pos v1b} \<union> {Suc 0 # ps |ps. ps \<in> Pos v2b}")
+prefer 2
+apply (metis (no_types, lifting) Un_iff)
+apply(simp (no_asm_use))
+apply(simp)
+apply(erule Prf.cases)
+apply(simp_all)
+apply(erule Prf.cases)
+apply(simp_all)
+apply(auto)[1]
+using Pos_empty apply fastforce
+apply(erule Prf.cases)
+apply(simp_all)
+apply(erule Prf.cases)
+apply(simp_all)
+apply(auto)[1]
+using Pos_empty apply fastforce
+apply(clarify)
+apply(simp add: insert_ident)
+apply(drule_tac x="rb" in meta_spec)
+apply(drule_tac x="STAR rb" in meta_spec)
+apply(drule_tac x="vb" in meta_spec)
+apply(drule_tac x="Stars vsb" in meta_spec)
+apply(simp)
+apply(drule_tac meta_mp)
+apply(rule subset_antisym)
+apply(rule subsetI)
+apply(subgoal_tac "0 # x \<in> {0 # ps |ps. ps \<in> Pos va}")
+prefer 2
+apply(auto)[1]
+apply(subgoal_tac "0 # x \<in> {0 # ps |ps. ps \<in> Pos vb} \<union> {Suc n # ps |n ps. n # ps \<in> Pos (Stars vsb)}")
+prefer 2
+apply (metis (no_types, lifting) Un_iff)
+apply(simp)
+apply(rule subsetI)
+apply(subgoal_tac "0 # x \<in> {0 # ps |ps. ps \<in> Pos vb}")
+prefer 2
+apply(auto)[1]
+apply(subgoal_tac "0 # x \<in> {0 # ps |ps. ps \<in> Pos va} \<union> {Suc n # ps |n ps. n # ps \<in> Pos (Stars vsa)}")
+prefer 2
+apply (metis (no_types, lifting) Un_iff)
+apply(simp (no_asm_use))
+apply(simp)
+apply(drule_tac meta_mp)
+apply(rule subset_antisym)
+apply(rule subsetI)
+apply(case_tac vsa)
+apply(simp)
+apply (simp add: Pos_empty)
+apply(simp)
+apply(clarify)
+apply(erule disjE)
+apply (simp add: Pos_empty)
+apply(erule disjE)
+apply(clarify)
+apply(subgoal_tac
+ "Suc 0 # ps \<in> {Suc n # ps |n ps. n = 0 \<and> ps \<in> Pos a \<or> (\<exists>na. n = Suc na \<and> na # ps \<in> Pos (Stars list))}")
+prefer 2
+apply blast
+apply(subgoal_tac "Suc 0 # ps \<in> {0 # ps |ps. ps \<in> Pos vb} \<union> {Suc n # ps |n ps. n # ps \<in> Pos (Stars vsb)}")
+prefer 2
+apply (metis (no_types, lifting) Un_iff)
+apply(simp)
+apply(clarify)
+apply(subgoal_tac
+ "Suc (Suc n) # ps \<in> {Suc n # ps |n ps. n = 0 \<and> ps \<in> Pos a \<or> (\<exists>na. n = Suc na \<and> na # ps \<in> Pos (Stars list))}")
+prefer 2
+apply blast
+apply(subgoal_tac "Suc (Suc n) # ps \<in> {0 # ps |ps. ps \<in> Pos vb} \<union> {Suc n # ps |n ps. n # ps \<in> Pos (Stars vsb)}")
+prefer 2
+apply (metis (no_types, lifting) Un_iff)
+apply(simp)
+apply(rule subsetI)
+apply(case_tac vsb)
+apply(simp)
+apply (simp add: Pos_empty)
+apply(simp)
+apply(clarify)
+apply(erule disjE)
+apply (simp add: Pos_empty)
+apply(erule disjE)
+apply(clarify)
+apply(subgoal_tac
+ "Suc 0 # ps \<in> {Suc n # ps |n ps. n = 0 \<and> ps \<in> Pos a \<or> (\<exists>na. n = Suc na \<and> na # ps \<in> Pos (Stars list))}")
+prefer 2
+apply(simp)
+apply(subgoal_tac "Suc 0 # ps \<in> {Suc n # ps |n ps. n # ps \<in> Pos (Stars vsa)}")
+apply blast
+using list.inject apply blast
+apply(clarify)
+apply(subgoal_tac
+ "Suc (Suc n) # ps \<in> {Suc n # ps |n ps. n = 0 \<and> ps \<in> Pos a \<or> (\<exists>na. n = Suc na \<and> na # ps \<in> Pos (Stars list))}")
+prefer 2
+apply(simp)
+apply(subgoal_tac "Suc (Suc n) # ps \<in> {0 # ps |ps. ps \<in> Pos vb} \<union> {Suc n # ps |n ps. n # ps \<in> Pos (Stars vsa)}")
+prefer 2
+apply (metis (no_types, lifting) Un_iff)
+apply(simp (no_asm_use))
+apply(simp)
+done
+
+definition prefix_list:: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" ("_ \<sqsubseteq>pre _")
+where
+ "ps1 \<sqsubseteq>pre ps2 \<equiv> (\<exists>ps'. ps1 @ps' = ps2)"
+
+definition sprefix_list:: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" ("_ \<sqsubset>spre _")
+where
+ "ps1 \<sqsubset>spre ps2 \<equiv> (ps1 \<sqsubseteq>pre ps2 \<and> ps1 \<noteq> ps2)"
+
+inductive lex_lists :: "nat list \<Rightarrow> nat list \<Rightarrow> bool" ("_ \<sqsubset>lex _")
+where
+ "[] \<sqsubset>lex p#ps"
+| "ps1 \<sqsubset>lex ps2 \<Longrightarrow> (p#ps1) \<sqsubset>lex (p#ps2)"
+| "p1 < p2 \<Longrightarrow> (p1#ps1) \<sqsubset>lex (p2#ps2)"
+
+lemma lex_irrfl:
+ fixes ps1 ps2 :: "nat list"
+ assumes "ps1 \<sqsubset>lex ps2"
+ shows "ps1 \<noteq> ps2"
+using assms
+apply(induct rule: lex_lists.induct)
+apply(auto)
+done
+
+lemma lex_append:
+ assumes "ps2 \<noteq> []"
+ shows "ps \<sqsubset>lex ps @ ps2"
+using assms
+apply(induct ps)
+apply(auto intro: lex_lists.intros)
+apply(case_tac ps2)
+apply(simp)
+apply(simp)
+apply(auto intro: lex_lists.intros)
+done
+
+lemma lexordp_simps [simp]:
+ fixes xs ys :: "nat list"
+ shows "[] \<sqsubset>lex ys = (ys \<noteq> [])"
+ and "xs \<sqsubset>lex [] = False"
+ and "(x # xs) \<sqsubset>lex (y # ys) \<longleftrightarrow> (x < y \<or> (\<not> y < x \<and> xs \<sqsubset>lex ys))"
+apply -
+apply (metis lex_append lex_lists.simps list.simps(3))
+using lex_lists.cases apply blast
+using lex_lists.cases lex_lists.intros(2) lex_lists.intros(3) not_less_iff_gr_or_eq by fastforce
+
+lemma lex_append_cancel [simp]:
+ fixes ps ps1 ps2 :: "nat list"
+ shows "ps @ ps1 \<sqsubset>lex ps @ ps2 \<longleftrightarrow> ps1 \<sqsubset>lex ps2"
+apply(induct ps)
+apply(auto)
+done
+
+lemma lex_trans:
+ fixes ps1 ps2 ps3 :: "nat list"
+ assumes "ps1 \<sqsubset>lex ps2" "ps2 \<sqsubset>lex ps3"
+ shows "ps1 \<sqsubset>lex ps3"
+using assms
+apply(induct arbitrary: ps3 rule: lex_lists.induct)
+apply(erule lex_lists.cases)
+apply(simp_all)
+apply(rotate_tac 2)
+apply(erule lex_lists.cases)
+apply(simp_all)
+apply(erule lex_lists.cases)
+apply(simp_all)
+done
+
+lemma trichotomous_aux:
+ fixes p q :: "nat list"
+ assumes "p \<sqsubset>lex q" "p \<noteq> q"
+ shows "\<not>(q \<sqsubset>lex p)"
+using assms
+apply(induct rule: lex_lists.induct)
+apply(auto)
+done
+
+lemma trichotomous_aux2:
+ fixes p q :: "nat list"
+ assumes "p \<sqsubset>lex q" "q \<sqsubset>lex p"
+ shows "False"
+using assms
+apply(induct rule: lex_lists.induct)
+apply(auto)
+done
+
+lemma trichotomous:
+ fixes p q :: "nat list"
+ shows "p = q \<or> p \<sqsubset>lex q \<or> q \<sqsubset>lex p"
+apply(induct p arbitrary: q)
+apply(auto)
+apply(case_tac q)
+apply(auto)
+done
+
+definition dpos :: "val \<Rightarrow> val \<Rightarrow> nat list \<Rightarrow> bool"
+ where
+ "dpos v1 v2 p \<equiv> (p \<in> Pos v1 \<union> Pos v2) \<and> (p \<notin> Pos v1 \<inter> Pos v2)"
+
+definition
+ "DPos v1 v2 \<equiv> {p. dpos v1 v2 p}"
+
+lemma outside_lemma:
+ assumes "p \<notin> Pos v1 \<union> Pos v2"
+ shows "pflat_len v1 p = pflat_len v2 p"
+using assms
+apply(auto simp add: pflat_len_def)
+done
+
+lemma dpos_lemma_aux:
+ assumes "p \<in> Pos v1 \<union> Pos v2"
+ and "pflat_len v1 p = pflat_len v2 p"
+ shows "p \<in> Pos v1 \<inter> Pos v2"
+using assms
+apply(auto simp add: pflat_len_def)
+apply (smt inlen_bigger)
+apply (smt inlen_bigger)
+done
+
+lemma dpos_lemma:
+ assumes "p \<in> Pos v1 \<union> Pos v2"
+ and "pflat_len v1 p = pflat_len v2 p"
+ shows "\<not>dpos v1 v2 p"
+using assms
+apply(auto simp add: dpos_def dpos_lemma_aux)
+using dpos_lemma_aux apply auto[1]
+using dpos_lemma_aux apply auto[1]
+done
+
+lemma dpos_lemma2:
+ assumes "p \<in> Pos v1 \<union> Pos v2"
+ and "dpos v1 v2 p"
+ shows "pflat_len v1 p \<noteq> pflat_len v2 p"
+using assms
+using dpos_lemma by blast
+
+lemma DPos_lemma:
+ assumes "p \<in> DPos v1 v2"
+ shows "pflat_len v1 p \<noteq> pflat_len v2 p"
+using assms
+unfolding DPos_def
+apply(auto simp add: pflat_len_def dpos_def)
+apply (smt inlen_bigger)
+by (smt inlen_bigger)
+
+
+definition val_ord:: "val \<Rightarrow> nat list \<Rightarrow> val \<Rightarrow> bool" ("_ \<sqsubset>val _ _")
+where
+ "v1 \<sqsubset>val p v2 \<equiv> (p \<in> Pos v1 \<and> pflat_len v1 p > pflat_len v2 p \<and>
+ (\<forall>q \<in> Pos v1 \<union> Pos v2. q \<sqsubset>lex p \<longrightarrow> pflat_len v1 q = pflat_len v2 q))"
+
+
+definition val_ord_ex:: "val \<Rightarrow> val \<Rightarrow> bool" ("_ :\<sqsubset>val _")
+where
+ "v1 :\<sqsubset>val v2 \<equiv> (\<exists>p. v1 \<sqsubset>val p v2)"
+
+definition val_ord_ex1:: "val \<Rightarrow> val \<Rightarrow> bool" ("_ :\<sqsubseteq>val _")
where
- C2: "v1 >r1 v1' \<Longrightarrow> (Seq v1 v2) >(SEQ r1 r2) (Seq v1' v2')"
-| C1: "v2 >r2 v2' \<Longrightarrow> (Seq v1 v2) >(SEQ r1 r2) (Seq v1 v2')"
-| A1: "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) >(ALT r1 r2) (Left v1)"
-| A2: "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) >(ALT r1 r2) (Right v2)"
-| A3: "v2 >r2 v2' \<Longrightarrow> (Right v2) >(ALT r1 r2) (Right v2')"
-| A4: "v1 >r1 v1' \<Longrightarrow> (Left v1) >(ALT r1 r2) (Left v1')"
-| K1: "flat (Stars (v # vs)) = [] \<Longrightarrow> (Stars []) >(STAR r) (Stars (v # vs))"
-| K2: "flat (Stars (v # vs)) \<noteq> [] \<Longrightarrow> (Stars (v # vs)) >(STAR r) (Stars [])"
-| K3: "v1 >r v2 \<Longrightarrow> (Stars (v1 # vs1)) >(STAR r) (Stars (v2 # vs2))"
-| K4: "(Stars vs1) >(STAR r) (Stars vs2) \<Longrightarrow> (Stars (v # vs1)) >(STAR r) (Stars (v # vs2))"
+ "v1 :\<sqsubseteq>val v2 \<equiv> v1 :\<sqsubset>val v2 \<or> v1 = v2"
+
+lemma val_ord_shorterI:
+ assumes "length (flat v') < length (flat v)"
+ shows "v :\<sqsubset>val v'"
+using assms(1)
+apply(subst val_ord_ex_def)
+apply(rule_tac x="[]" in exI)
+apply(subst val_ord_def)
+apply(rule conjI)
+apply (simp add: Pos_empty)
+apply(rule conjI)
+apply(simp add: pflat_len_simps)
+apply (simp add: intlen_length)
+apply(simp)
+done
+
+
+
+lemma val_ord_ALTI:
+ assumes "v \<sqsubset>val p v'" "flat v = flat v'"
+ shows "(Left v) \<sqsubset>val (0#p) (Left v')"
+using assms(1)
+apply(subst (asm) val_ord_def)
+apply(erule conjE)
+apply(subst val_ord_def)
+apply(rule conjI)
+apply(simp)
+apply(rule conjI)
+apply(simp add: pflat_len_simps)
+apply(rule ballI)
+apply(rule impI)
+apply(simp only: Pos.simps)
+apply(auto)[1]
+using assms(2)
+apply(simp add: pflat_len_simps)
+apply(auto simp add: pflat_len_simps)[2]
+done
+
+lemma val_ord_ALTI2:
+ assumes "v \<sqsubset>val p v'" "flat v = flat v'"
+ shows "(Right v) \<sqsubset>val (1#p) (Right v')"
+using assms(1)
+apply(subst (asm) val_ord_def)
+apply(erule conjE)
+apply(subst val_ord_def)
+apply(rule conjI)
+apply(simp)
+apply(rule conjI)
+apply(simp add: pflat_len_simps)
+apply(rule ballI)
+apply(rule impI)
+apply(simp only: Pos.simps)
+apply(auto)[1]
+using assms(2)
+apply(simp add: pflat_len_simps)
+apply(auto simp add: pflat_len_simps)[2]
+done
+
+lemma val_ord_STARI:
+ assumes "v1 \<sqsubset>val p v2" "flat (Stars (v1#vs1)) = flat (Stars (v2#vs2))"
+ shows "(Stars (v1#vs1)) \<sqsubset>val (0#p) (Stars (v2#vs2))"
+using assms(1)
+apply(subst (asm) val_ord_def)
+apply(erule conjE)
+apply(subst val_ord_def)
+apply(rule conjI)
+apply(simp)
+apply(rule conjI)
+apply(subst pflat_len_Stars_simps)
+apply(simp)
+apply(subst pflat_len_Stars_simps)
+apply(simp)
+apply(simp)
+apply(rule ballI)
+apply(rule impI)
+apply(simp)
+apply(auto)
+using assms(2)
+apply(simp add: pflat_len_simps)
+apply(auto simp add: pflat_len_Stars_simps)
+done
+
+lemma val_ord_STARI2:
+ assumes "(Stars vs1) \<sqsubset>val n#p (Stars vs2)" "flat (Stars vs1) = flat (Stars vs2)"
+ shows "(Stars (v#vs1)) \<sqsubset>val (Suc n#p) (Stars (v#vs2))"
+using assms(1)
+apply(subst (asm) val_ord_def)
+apply(erule conjE)+
+apply(subst val_ord_def)
+apply(rule conjI)
+apply(simp)
+apply(rule conjI)
+apply(case_tac vs1)
+apply(simp)
+apply(simp)
+apply(auto)[1]
+apply(case_tac vs2)
+apply(simp)
+apply (simp add: pflat_len_def)
+apply(simp)
+apply(auto)[1]
+apply (simp add: pflat_len_Stars_simps)
+using pflat_len_def apply auto[1]
+apply(rule ballI)
+apply(rule impI)
+apply(simp)
+using assms(2)
+apply(auto)
+apply (simp add: pflat_len_simps(7))
+apply (simp add: pflat_len_Stars_simps)
+using assms(2)
+apply(auto simp add: pflat_len_def)[1]
+apply force
+apply force
+apply(auto simp add: pflat_len_def)[1]
+apply force
+apply force
+apply(auto simp add: pflat_len_def)[1]
+apply(auto simp add: pflat_len_def)[1]
+apply force
+apply force
+apply(auto simp add: pflat_len_def)[1]
+apply force
+apply force
+done
+
+
+lemma val_ord_SEQI:
+ assumes "v1 \<sqsubset>val p v1'" "flat (Seq v1 v2) = flat (Seq v1' v2')"
+ shows "(Seq v1 v2) \<sqsubset>val (0#p) (Seq v1' v2')"
+using assms(1)
+apply(subst (asm) val_ord_def)
+apply(erule conjE)
+apply(subst val_ord_def)
+apply(rule conjI)
+apply(simp)
+apply(rule conjI)
+apply(simp add: pflat_len_simps)
+apply(rule ballI)
+apply(rule impI)
+apply(simp only: Pos.simps)
+apply(auto)[1]
+apply(simp add: pflat_len_simps)
+using assms(2)
+apply(simp)
+apply(auto simp add: pflat_len_simps)[2]
+done
+
+
+lemma val_ord_SEQI2:
+ assumes "v2 \<sqsubset>val p v2'" "flat v2 = flat v2'"
+ shows "(Seq v v2) \<sqsubset>val (1#p) (Seq v v2')"
+using assms(1)
+apply(subst (asm) val_ord_def)
+apply(erule conjE)+
+apply(subst val_ord_def)
+apply(rule conjI)
+apply(simp)
+apply(rule conjI)
+apply(simp add: pflat_len_simps)
+apply(rule ballI)
+apply(rule impI)
+apply(simp only: Pos.simps)
+apply(auto)
+apply(auto simp add: pflat_len_def intlen_append)
+apply(auto simp add: assms(2))
+done
+
+lemma val_ord_SEQE_0:
+ assumes "(Seq v1 v2) \<sqsubset>val 0#p (Seq v1' v2')"
+ shows "v1 \<sqsubset>val p v1'"
+using assms(1)
+apply(simp add: val_ord_def val_ord_ex_def)
+apply(auto)[1]
+apply(simp add: pflat_len_simps)
+apply(simp add: val_ord_def pflat_len_def)
+apply(auto)[1]
+apply(drule_tac x="0#q" in bspec)
+apply(simp)
+apply(simp)
+apply(drule_tac x="0#q" in bspec)
+apply(simp)
+apply(simp)
+apply(drule_tac x="0#q" in bspec)
+apply(simp)
+apply(simp)
+apply(simp add: val_ord_def pflat_len_def)
+apply(auto)[1]
+done
+
+lemma val_ord_SEQE_1:
+ assumes "(Seq v1 v2) \<sqsubset>val (Suc 0)#p (Seq v1' v2')"
+ shows "v2 \<sqsubset>val p v2'"
+using assms(1)
+apply(simp add: val_ord_def pflat_len_def)
+apply(auto)[1]
+apply(drule_tac x="1#q" in bspec)
+apply(simp)
+apply(simp)
+apply(drule_tac x="1#q" in bspec)
+apply(simp)
+apply(simp)
+apply(drule_tac x="1#q" in bspec)
+apply(simp)
+apply(auto)[1]
+apply(drule_tac x="1#q" in bspec)
+apply(simp)
+apply(auto)
+apply(simp add: intlen_append)
+apply force
+apply(simp add: intlen_append)
+apply force
+apply(simp add: intlen_append)
+apply force
+apply(simp add: intlen_append)
+apply force
+done
+
+lemma val_ord_SEQE_2:
+ assumes "(Seq v1 v2) \<sqsubset>val (Suc 0)#p (Seq v1' v2')"
+ and "\<turnstile> v1 : r" "\<turnstile> v1' : r"
+ shows "v1 = v1'"
+proof -
+ have "\<forall>q \<in> Pos v1 \<union> Pos v1'. 0 # q \<sqsubset>lex 1#p \<longrightarrow> pflat_len v1 q = pflat_len v1' q"
+ using assms(1)
+ apply(simp add: val_ord_def)
+ apply(rule ballI)
+ apply(clarify)
+ apply(drule_tac x="0#q" in bspec)
+ apply(auto)[1]
+ apply(simp add: pflat_len_simps)
+ done
+ then have "Pos v1 = Pos v1'"
+ apply(rule_tac Two_to_Three_orig)
+ apply(rule ballI)
+ apply(drule_tac x="pa" in bspec)
+ apply(simp)
+ apply(simp)
+ done
+ then show "v1 = v1'"
+ apply(rule_tac Three_to_One)
+ apply(rule assms)
+ apply(rule assms)
+ apply(simp)
+ done
+qed
+
+lemma val_ord_SEQ:
+ assumes "(Seq v1 v2) :\<sqsubset>val (Seq v1' v2')"
+ and "flat (Seq v1 v2) = flat (Seq v1' v2')"
+ and "\<turnstile> v1 : r" "\<turnstile> v1' : r"
+ shows "(v1 :\<sqsubset>val v1') \<or> (v1 = v1' \<and> (v2 :\<sqsubset>val v2'))"
+using assms(1)
+apply(subst (asm) val_ord_ex_def)
+apply(erule exE)
+apply(simp only: val_ord_def)
+apply(simp)
+apply(erule conjE)+
+apply(erule disjE)
+prefer 2
+apply(erule disjE)
+apply(erule exE)
+apply(rule disjI1)
+apply(simp)
+apply(subst val_ord_ex_def)
+apply(rule_tac x="ps" in exI)
+apply(rule val_ord_SEQE_0)
+apply(simp add: val_ord_def)
+apply(erule exE)
+apply(rule disjI2)
+apply(rule conjI)
+thm val_ord_SEQE_1
+apply(rule_tac val_ord_SEQE_2)
+apply(auto simp add: val_ord_def)[3]
+apply(rule assms(3))
+apply(rule assms(4))
+apply(subst val_ord_ex_def)
+apply(rule_tac x="ps" in exI)
+apply(rule_tac val_ord_SEQE_1)
+apply(auto simp add: val_ord_def)[1]
+apply(simp)
+using assms(2)
+apply(simp add: pflat_len_simps)
+done
+
+lemma val_ord_ex_trans:
+ assumes "v1 :\<sqsubset>val v2" "v2 :\<sqsubset>val v3"
+ shows "v1 :\<sqsubset>val v3"
+using assms
+unfolding val_ord_ex_def
+apply(clarify)
+apply(subgoal_tac "p = pa \<or> p \<sqsubset>lex pa \<or> pa \<sqsubset>lex p")
+prefer 2
+apply(rule trichotomous)
+apply(erule disjE)
+apply(simp)
+apply(rule_tac x="pa" in exI)
+apply(subst val_ord_def)
+apply(rule conjI)
+apply(simp add: val_ord_def)
+apply(auto)[1]
+apply(simp add: val_ord_def)
+apply(simp add: val_ord_def)
+apply(auto)[1]
+using outside_lemma apply blast
+apply(simp add: val_ord_def)
+apply(auto)[1]
+using outside_lemma apply force
+apply auto[1]
+apply(simp add: val_ord_def)
+apply(auto)[1]
+apply (metis (no_types, hide_lams) lex_trans outside_lemma)
+apply(simp add: val_ord_def)
+apply(auto)[1]
+by (metis IntE Two_to_Three_aux UnCI lex_trans outside_lemma)
+
+
+definition fdpos :: "val \<Rightarrow> val \<Rightarrow> nat list \<Rightarrow> bool"
+where
+ "fdpos v1 v2 p \<equiv> ({q. q \<sqsubset>lex p} \<inter> DPos v1 v2 = {})"
+
+
+lemma pos_append:
+ assumes "p @ q \<in> Pos v"
+ shows "q \<in> Pos (at v p)"
+using assms
+apply(induct arbitrary: p q rule: Pos.induct)
+apply(simp_all)
+apply(auto)[1]
+apply(simp add: append_eq_Cons_conv)
+apply(auto)[1]
+apply(auto)[1]
+apply(simp add: append_eq_Cons_conv)
+apply(auto)[1]
+apply(auto)[1]
+apply(simp add: append_eq_Cons_conv)
+apply(auto)[1]
+apply(simp add: append_eq_Cons_conv)
+apply(auto)[1]
+apply(auto)[1]
+apply(simp add: append_eq_Cons_conv)
+apply(auto)[1]
+apply(simp add: append_eq_Cons_conv)
+apply(auto)[1]
+by (metis append_Cons at.simps(6))
+
+
+lemma Pos_pre:
+ assumes "p \<in> Pos v" "q \<sqsubseteq>pre p"
+ shows "q \<in> Pos v"
+using assms
+apply(induct v arbitrary: p q rule: Pos.induct)
+apply(simp_all add: prefix_list_def)
+apply (meson append_eq_Cons_conv append_is_Nil_conv)
+apply (meson append_eq_Cons_conv append_is_Nil_conv)
+apply (metis (no_types, lifting) Cons_eq_append_conv append_is_Nil_conv)
+apply(auto)
+apply (meson append_eq_Cons_conv)
+apply(simp add: append_eq_Cons_conv)
+apply(auto)
+done
+
+lemma lex_lists_order:
+ assumes "q' \<sqsubset>lex q" "\<not>(q' \<sqsubseteq>pre q)"
+ shows "\<not>(q \<sqsubset>lex q')"
+using assms
+apply(induct rule: lex_lists.induct)
+apply(simp add: prefix_list_def)
+apply(auto)
+using trichotomous_aux2 by auto
+
+lemma lex_appendL:
+ assumes "q \<sqsubset>lex p"
+ shows "q \<sqsubset>lex p @ q'"
+using assms
+apply(induct arbitrary: q' rule: lex_lists.induct)
+apply(auto)
+done
+
+
+inductive
+ CPrf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<Turnstile> _ : _" [100, 100] 100)
+where
+ "\<lbrakk>\<Turnstile> v1 : r1; \<Turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<Turnstile> Seq v1 v2 : SEQ r1 r2"
+| "\<Turnstile> v1 : r1 \<Longrightarrow> \<Turnstile> Left v1 : ALT r1 r2"
+| "\<Turnstile> v2 : r2 \<Longrightarrow> \<Turnstile> Right v2 : ALT r1 r2"
+| "\<Turnstile> Void : ONE"
+| "\<Turnstile> Char c : CHAR c"
+| "\<Turnstile> Stars [] : STAR r"
+| "\<lbrakk>\<Turnstile> v : r; flat v \<noteq> []; \<Turnstile> Stars vs : STAR r\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (v # vs) : STAR r"
+
+lemma Prf_CPrf:
+ assumes "\<Turnstile> v : r"
+ shows "\<turnstile> v : r"
+using assms
+apply(induct)
+apply(auto intro: Prf.intros)
+done
+
+definition
+ "CPT r s = {v. flat v = s \<and> \<Turnstile> v : r}"
+
+definition
+ "CPTpre r s = {v. \<exists>s'. flat v @ s' = s \<and> \<Turnstile> v : r}"
+
+lemma CPT_CPTpre_subset:
+ shows "CPT r s \<subseteq> CPTpre r s"
+apply(auto simp add: CPT_def CPTpre_def)
+done
+
+
+lemma CPTpre_subsets:
+ "CPTpre ZERO s = {}"
+ "CPTpre ONE s \<subseteq> {Void}"
+ "CPTpre (CHAR c) s \<subseteq> {Char c}"
+ "CPTpre (ALT r1 r2) s \<subseteq> Left ` CPTpre r1 s \<union> Right ` CPTpre r2 s"
+ "CPTpre (SEQ r1 r2) s \<subseteq> {Seq v1 v2 | v1 v2. v1 \<in> CPTpre r1 s \<and> v2 \<in> CPTpre r2 (drop (length (flat v1)) s)}"
+ "CPTpre (STAR r) s \<subseteq> {Stars []} \<union>
+ {Stars (v#vs) | v vs. v \<in> CPTpre r s \<and> flat v \<noteq> [] \<and> Stars vs \<in> CPTpre (STAR r) (drop (length (flat v)) s)}"
+ "CPTpre (STAR r) [] = {Stars []}"
+apply(auto simp add: CPTpre_def)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(rule CPrf.intros)
+done
+
+
+lemma CPTpre_simps:
+ shows "CPTpre ONE s = {Void}"
+ and "CPTpre (CHAR c) (d#s) = (if c = d then {Char c} else {})"
+ and "CPTpre (ALT r1 r2) s = Left ` CPTpre r1 s \<union> Right ` CPTpre r2 s"
+ and "CPTpre (SEQ r1 r2) s =
+ {Seq v1 v2 | v1 v2. v1 \<in> CPTpre r1 s \<and> v2 \<in> CPTpre r2 (drop (length (flat v1)) s)}"
+apply -
+apply(rule subset_antisym)
+apply(rule CPTpre_subsets)
+apply(auto simp add: CPTpre_def intro: "CPrf.intros")[1]
+apply(case_tac "c = d")
+apply(simp)
+apply(rule subset_antisym)
+apply(rule CPTpre_subsets)
+apply(auto simp add: CPTpre_def intro: CPrf.intros)[1]
+apply(simp)
+apply(auto simp add: CPTpre_def intro: CPrf.intros)[1]
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(rule subset_antisym)
+apply(rule CPTpre_subsets)
+apply(auto simp add: CPTpre_def intro: CPrf.intros)[1]
+apply(rule subset_antisym)
+apply(rule CPTpre_subsets)
+apply(auto simp add: CPTpre_def intro: CPrf.intros)[1]
+done
+
+lemma CPT_simps:
+ shows "CPT ONE s = (if s = [] then {Void} else {})"
+ and "CPT (CHAR c) [d] = (if c = d then {Char c} else {})"
+ and "CPT (ALT r1 r2) s = Left ` CPT r1 s \<union> Right ` CPT r2 s"
+ and "CPT (SEQ r1 r2) s =
+ {Seq v1 v2 | v1 v2 s1 s2. s1 @ s2 = s \<and> v1 \<in> CPT r1 s1 \<and> v2 \<in> CPT r2 s2}"
+apply -
+apply(rule subset_antisym)
+apply(auto simp add: CPT_def)[1]
+apply(erule CPrf.cases)
+apply(simp_all)[7]
+apply(erule CPrf.cases)
+apply(simp_all)[7]
+apply(auto simp add: CPT_def intro: CPrf.intros)[1]
+apply(auto simp add: CPT_def intro: CPrf.intros)[1]
+apply(erule CPrf.cases)
+apply(simp_all)[7]
+apply(erule CPrf.cases)
+apply(simp_all)[7]
+apply(auto simp add: CPT_def image_def intro: CPrf.intros)[1]
+apply(erule CPrf.cases)
+apply(simp_all)[7]
+apply(clarify)
+apply blast
+apply(auto simp add: CPT_def image_def intro: CPrf.intros)[1]
+apply(erule CPrf.cases)
+apply(simp_all)[7]
+done
+
+lemma CPTpre_SEQ:
+ assumes "v \<in> CPTpre (SEQ r1 r2) s"
+ shows "\<exists>s'. flat v = s' \<and> (s' \<sqsubseteq>pre s) \<and> s' \<in> L (SEQ r1 r2)"
+using assms
+apply(simp add: CPTpre_simps)
+apply(auto simp add: CPTpre_def)
+apply (simp add: prefix_list_def)
+by (metis L.simps(4) L_flat_Prf1 Prf.intros(1) Prf_CPrf flat.simps(5))
+
+lemma Cond_prefix:
+ assumes "\<forall>s\<^sub>3. s1 @ s\<^sub>3 \<in> L r1 \<longrightarrow> s\<^sub>3 = [] \<or> (\<forall>s\<^sub>4. s1 @ s\<^sub>3 @ s\<^sub>4 \<sqsubseteq>pre s1 @ s2 \<longrightarrow> s\<^sub>4 \<notin> L r2)"
+ and "t1 \<in> L r1" "t2 \<in> L r2" "t1 @ t2 \<sqsubseteq>pre s1 @ s2"
+ shows "t1 \<sqsubseteq>pre s1"
+using assms
+apply(auto simp add: Sequ_def prefix_list_def append_eq_append_conv2)
+done
+
+
+
+lemma CPTpre_test:
+ assumes "s \<in> r \<rightarrow> v"
+ shows "\<not>(\<exists>v' \<in> CPT r s. v :\<sqsubset>val v')"
+using assms
+apply(induct r arbitrary: s v rule: rexp.induct)
+apply(erule Posix.cases)
+apply(simp_all)
+apply(erule Posix.cases)
+apply(simp_all)
+apply(simp add: CPT_simps)
+apply(simp add: val_ord_def val_ord_ex_def)
+apply(erule Posix.cases)
+apply(simp_all)
+apply(simp add: CPT_simps)
+apply (simp add: val_ord_def val_ord_ex_def)
+(* SEQ *)
+apply(rule ballI)
+apply(erule Posix.cases)
+apply(simp_all)
+apply(clarify)
+apply(subst (asm) CPT_simps)
+apply(simp)
+apply(clarify)
+thm val_ord_SEQ
+apply(drule_tac ?r="r1" in val_ord_SEQ)
+apply(simp)
+apply (simp add: CPT_def Posix1(2))
+apply (simp add: Posix1a)
+apply (simp add: CPT_def Posix1a)
+using Prf_CPrf apply auto[1]
+apply(erule disjE)
+apply(drule_tac x="s1" in meta_spec)
+apply(drule_tac x="v1" in meta_spec)
+apply(simp)
+apply(drule_tac x="v1a" in bspec)
+apply(subgoal_tac "s1 = s1a")
+apply(simp)
+apply(auto simp add: append_eq_append_conv2)[1]
+apply (metis (mono_tags, lifting) CPT_def L_flat_Prf1 Prf_CPrf append_Nil append_Nil2 mem_Collect_eq)
+apply(simp add: CPT_def)
+apply(auto)[1]
+oops
+
+
+lemma test:
+ assumes "finite A"
+ shows "finite {vs. Stars vs \<in> A}"
+using assms
+apply(induct A)
+apply(simp)
+apply(auto)
+apply(case_tac x)
+apply(simp_all)
+done
+
+lemma CPTpre_STAR_finite:
+ assumes "\<And>s. finite (CPTpre r s)"
+ shows "finite (CPTpre (STAR r) s)"
+apply(induct s rule: length_induct)
+apply(case_tac xs)
+apply(simp)
+apply(simp add: CPTpre_subsets)
+apply(rule finite_subset)
+apply(rule CPTpre_subsets)
+apply(simp)
+apply(rule_tac B="(\<lambda>(v, vs). Stars (v#vs)) ` {(v, vs). v \<in> CPTpre r (a#list) \<and> flat v \<noteq> [] \<and> Stars vs \<in> CPTpre (STAR r) (drop (length (flat v)) (a#list))}" in finite_subset)
+apply(auto)[1]
+apply(rule finite_imageI)
+apply(simp add: Collect_case_prod_Sigma)
+apply(rule finite_SigmaI)
+apply(rule assms)
+apply(case_tac "flat v = []")
+apply(simp)
+apply(drule_tac x="drop (length (flat v)) (a # list)" in spec)
+apply(simp)
+apply(auto)[1]
+apply(rule test)
+apply(simp)
+done
+
+lemma CPTpre_finite:
+ shows "finite (CPTpre r s)"
+apply(induct r arbitrary: s)
+apply(simp add: CPTpre_subsets)
+apply(rule finite_subset)
+apply(rule CPTpre_subsets)
+apply(simp)
+apply(rule finite_subset)
+apply(rule CPTpre_subsets)
+apply(simp)
+sorry
+
+
+lemma CPT_finite:
+ shows "finite (CPT r s)"
+apply(rule finite_subset)
+apply(rule CPT_CPTpre_subset)
+apply(rule CPTpre_finite)
+done
+
+lemma Posix_CPT:
+ assumes "s \<in> r \<rightarrow> v"
+ shows "v \<in> CPT r s"
+using assms
+apply(induct rule: Posix.induct)
+apply(simp add: CPT_def)
+apply(rule CPrf.intros)
+apply(simp add: CPT_def)
+apply(rule CPrf.intros)
+apply(simp add: CPT_def)
+apply(rule CPrf.intros)
+apply(simp)
+apply(simp add: CPT_def)
+apply(rule CPrf.intros)
+apply(simp)
+apply(simp add: CPT_def)
+apply(rule CPrf.intros)
+apply(simp)
+apply(simp)
+apply(simp add: CPT_def)
+apply(rule CPrf.intros)
+apply(simp)
+apply(simp)
+apply(simp)
+apply(simp add: CPT_def)
+apply(rule CPrf.intros)
+done
+
+lemma Posix_val_ord:
+ assumes "s \<in> r \<rightarrow> v1" "v2 \<in> CPTpre r s"
+ shows "v1 :\<sqsubseteq>val v2"
+using assms
+apply(induct arbitrary: v2 rule: Posix.induct)
+apply(simp add: CPTpre_def)
+apply(clarify)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(simp add: val_ord_ex1_def)
+apply(simp add: CPTpre_def)
+apply(clarify)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(simp add: val_ord_ex1_def)
+(* ALT1 *)
+prefer 3
+(* SEQ case *)
+apply(subst (asm) (3) CPTpre_def)
+apply(clarify)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(case_tac "s' = []")
+apply(simp)
+prefer 2
+apply(simp add: val_ord_ex1_def)
+apply(clarify)
+apply(simp)
+apply(simp add: val_ord_ex_def)
+apply(simp (no_asm) add: val_ord_def)
+apply(rule_tac x="[]" in exI)
+apply(simp add: pflat_len_simps)
+apply(rule intlen_length)
+apply (metis Posix1(2) append_assoc append_eq_conv_conj drop_eq_Nil not_le)
+apply(subgoal_tac "length (flat v1a) \<le> length s1")
+prefer 2
+apply (metis L_flat_Prf1 Prf_CPrf append_eq_append_conv_if append_take_drop_id drop_eq_Nil)
+apply(subst (asm) append_eq_append_conv_if)
+apply(simp)
+apply(clarify)
+apply(drule_tac x="v1a" in meta_spec)
+apply(drule meta_mp)
+apply(auto simp add: CPTpre_def)[1]
+using append_eq_conv_conj apply blast
+apply(subst (asm) (2)val_ord_ex1_def)
+apply(erule disjE)
+apply(subst (asm) val_ord_ex_def)
+apply(erule exE)
+apply(subst val_ord_ex1_def)
+apply(rule disjI1)
+apply(subst val_ord_ex_def)
+apply(rule_tac x="0#p" in exI)
+apply(rule val_ord_SEQI)
+apply(simp)
+apply(simp)
+apply (metis Posix1(2) append_assoc append_take_drop_id)
+apply(simp)
+apply(drule_tac x="v2b" in meta_spec)
+apply(drule meta_mp)
+apply(auto simp add: CPTpre_def)[1]
+apply (simp add: Posix1(2))
+apply(subst (asm) val_ord_ex1_def)
+apply(erule disjE)
+apply(subst (asm) val_ord_ex_def)
+apply(erule exE)
+apply(subst val_ord_ex1_def)
+apply(rule disjI1)
+apply(subst val_ord_ex_def)
+apply(rule_tac x="1#p" in exI)
+apply(rule val_ord_SEQI2)
+apply(simp)
+apply (simp add: Posix1(2))
+apply(subst val_ord_ex1_def)
+apply(simp)
+(* ALT *)
+apply(subst (asm) (2) CPTpre_def)
+apply(clarify)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(clarify)
+apply(case_tac "s' = []")
+apply(simp)
+apply(drule_tac x="v1" in meta_spec)
+apply(drule meta_mp)
+apply(auto simp add: CPTpre_def)[1]
+apply(subst (asm) val_ord_ex1_def)
+apply(erule disjE)
+apply(subst (asm) val_ord_ex_def)
+apply(erule exE)
+apply(subst val_ord_ex1_def)
+apply(rule disjI1)
+apply(subst val_ord_ex_def)
+apply(rule_tac x="0#p" in exI)
+apply(rule val_ord_ALTI)
+apply(simp)
+using Posix1(2) apply blast
+using val_ord_ex1_def apply blast
+apply(subst val_ord_ex1_def)
+apply(rule disjI1)
+apply (simp add: Posix1(2) val_ord_shorterI)
+apply(subst val_ord_ex1_def)
+apply(rule disjI1)
+apply(case_tac "s' = []")
+apply(simp)
+apply(subst val_ord_ex_def)
+apply(rule_tac x="[0]" in exI)
+apply(subst val_ord_def)
+apply(rule conjI)
+apply(simp add: Pos_empty)
+apply(rule conjI)
+apply(simp add: pflat_len_simps)
+apply (smt inlen_bigger)
+apply(simp)
+apply(rule conjI)
+apply(simp add: pflat_len_simps)
+using Posix1(2) apply auto[1]
+apply(rule ballI)
+apply(rule impI)
+apply(case_tac "q = []")
+using Posix1(2) apply auto[1]
+apply(auto)[1]
+apply(rule val_ord_shorterI)
+apply(simp)
+apply (simp add: Posix1(2))
+(* ALT RIGHT *)
+apply(subst (asm) (2) CPTpre_def)
+apply(clarify)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(clarify)
+apply(case_tac "s' = []")
+apply(simp)
+apply (simp add: L_flat_Prf1 Prf_CPrf)
+apply(subst val_ord_ex1_def)
+apply(rule disjI1)
+apply(rule val_ord_shorterI)
+apply(simp)
+apply (simp add: Posix1(2))
+apply(case_tac "s' = []")
+apply(simp)
+apply(drule_tac x="v2a" in meta_spec)
+apply(drule meta_mp)
+apply(auto simp add: CPTpre_def)[1]
+apply(subst (asm) val_ord_ex1_def)
+apply(erule disjE)
+apply(subst (asm) val_ord_ex_def)
+apply(erule exE)
+apply(subst val_ord_ex1_def)
+apply(rule disjI1)
+apply(subst val_ord_ex_def)
+apply(rule_tac x="1#p" in exI)
+apply(rule val_ord_ALTI2)
+apply(simp)
+using Posix1(2) apply blast
+apply (simp add: val_ord_ex1_def)
+apply(subst val_ord_ex1_def)
+apply(rule disjI1)
+apply(rule val_ord_shorterI)
+apply(simp)
+apply (simp add: Posix1(2))
+(* STAR empty case *)
+prefer 2
+apply(subst (asm) CPTpre_def)
+apply(clarify)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(clarify)
+apply (simp add: val_ord_ex1_def)
+(* STAR non-empty case *)
+apply(subst (asm) (3) CPTpre_def)
+apply(clarify)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(clarify)
+apply (simp add: val_ord_ex1_def)
+apply(rule val_ord_shorterI)
+apply(simp)
+apply(case_tac "s' = []")
+apply(simp)
+prefer 2
+apply (simp add: val_ord_ex1_def)
+apply(rule disjI1)
+apply(rule val_ord_shorterI)
+apply(simp)
+apply (metis Posix1(2) append_assoc append_eq_conv_conj drop_all flat.simps(7) flat_Stars length_append not_less)
+apply(drule_tac x="va" in meta_spec)
+apply(drule meta_mp)
+apply(auto simp add: CPTpre_def)[1]
+apply (smt L.simps(6) L_flat_Prf1 Prf_CPrf append_eq_append_conv2 flat_Stars self_append_conv)
+apply (subst (asm) (2) val_ord_ex1_def)
+apply(erule disjE)
+prefer 2
+apply(simp)
+apply(drule_tac x="Stars vsa" in meta_spec)
+apply(drule meta_mp)
+apply(auto simp add: CPTpre_def)[1]
+apply (simp add: Posix1(2))
+apply (subst (asm) val_ord_ex1_def)
+apply(erule disjE)
+apply (subst (asm) val_ord_ex_def)
+apply(erule exE)
+apply (subst val_ord_ex1_def)
+apply(rule disjI1)
+apply (subst val_ord_ex_def)
+apply(case_tac p)
+apply(simp)
+apply (metis Posix1(2) flat_Stars not_less_iff_gr_or_eq pflat_len_simps(7) same_append_eq val_ord_def)
+using Posix1(2) val_ord_STARI2 apply fastforce
+apply(simp add: val_ord_ex1_def)
+apply (subst (asm) val_ord_ex_def)
+apply(erule exE)
+apply (subst val_ord_ex1_def)
+apply(rule disjI1)
+apply (subst val_ord_ex_def)
+by (metis Posix1(2) flat.simps(7) flat_Stars val_ord_STARI)
+
+lemma Posix_val_ord_stronger:
+ assumes "s \<in> r \<rightarrow> v1" "v2 \<in> CPT r s"
+ shows "v1 :\<sqsubseteq>val v2"
+using assms
+apply(rule_tac Posix_val_ord)
+apply(assumption)
+apply(simp add: CPTpre_def CPT_def)
+done
+
+definition Minval :: "rexp \<Rightarrow> string \<Rightarrow> val \<Rightarrow> bool"
+ where
+ "Minval r s v \<equiv> \<Turnstile> v : r \<and> flat v = s \<and> (\<forall>v' \<in> CPT r s. v :\<sqsubset>val v' \<or> v = v')"
+
+lemma
+ assumes "s \<in> L(r)"
+ shows "\<exists>v. Minval r s v"
+using assms
+apply(induct r arbitrary: s)
+apply(simp)
+apply(simp)
+apply(rule_tac x="Void" in exI)
+apply(simp add: Minval_def)
+apply(rule conjI)
+apply (simp add: CPrf.intros(4))
+apply(clarify)
+apply(simp add: CPT_def)
+apply(auto)[1]
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(rule_tac x="Char x" in exI)
+apply(simp add: Minval_def)
+apply(rule conjI)
+apply (simp add: CPrf.intros)
+apply(clarify)
+apply(simp add: CPT_def)
+apply(auto)[1]
+apply(erule CPrf.cases)
+apply(simp_all)
+prefer 2
+apply(auto)[1]
+apply(drule_tac x="s" in meta_spec)
+apply(simp)
+apply(clarify)
+apply(rule_tac x="Left x" in exI)
+apply(simp (no_asm) add: Minval_def)
+apply(rule conjI)
+apply (simp add: CPrf.intros(2) Minval_def)
+apply(rule conjI)
+apply(simp add: Minval_def)
+apply(clarify)
+apply(simp add: CPT_def)
+apply(auto)[1]
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(simp add: val_ord_ex_def)
+apply(simp only: val_ord_def)
+oops
+
+lemma
+ "wf {(v1, v2). v1 \<in> CPT r s \<and> v2 \<in> CPT r s \<and> (v1 :\<sqsubset>val v2)}"
+apply(rule wfI)
+oops
+
+inductive ValOrd :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<preceq>_ _" [100, 100, 100] 100)
+where
+ C2: "v1 \<preceq>r1 v1' \<Longrightarrow> (Seq v1 v2) \<preceq>(SEQ r1 r2) (Seq v1' v2')"
+| C1: "v2 \<preceq>r2 v2' \<Longrightarrow> (Seq v1 v2) \<preceq>(SEQ r1 r2) (Seq v1 v2')"
+| A1: "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) \<preceq>(ALT r1 r2) (Left v1)"
+| A2: "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) \<preceq>(ALT r1 r2) (Right v2)"
+| A3: "v2 \<preceq>r2 v2' \<Longrightarrow> (Right v2) \<preceq>(ALT r1 r2) (Right v2')"
+| A4: "v1 \<preceq>r1 v1' \<Longrightarrow> (Left v1) \<preceq>(ALT r1 r2) (Left v1')"
+| K1: "flat (Stars (v # vs)) = [] \<Longrightarrow> (Stars []) \<preceq>(STAR r) (Stars (v # vs))"
+| K2: "flat (Stars (v # vs)) \<noteq> [] \<Longrightarrow> (Stars (v # vs)) \<preceq>(STAR r) (Stars [])"
+| K3: "v1 \<preceq>r v2 \<Longrightarrow> (Stars (v1 # vs1)) \<preceq>(STAR r) (Stars (v2 # vs2))"
+| K4: "(Stars vs1) \<preceq>(STAR r) (Stars vs2) \<Longrightarrow> (Stars (v # vs1)) \<preceq>(STAR r) (Stars (v # vs2))"
+| MY1: "Void \<preceq>ONE Void"
+| MY2: "(Char c) \<preceq>(CHAR c) (Char c)"
+| MY3: "(Stars []) \<preceq>(STAR r) (Stars [])"
+
+lemma ValOrd_refl:
+ assumes "\<turnstile> v : r"
+ shows "v \<preceq>r v"
+using assms
+apply(induct r rule: Prf.induct)
+apply(rule ValOrd.intros)
+apply(simp)
+apply(rule ValOrd.intros)
+apply(simp)
+apply(rule ValOrd.intros)
+apply(simp)
+apply(rule ValOrd.intros)
+apply(rule ValOrd.intros)
+apply(rule ValOrd.intros)
+apply(rule ValOrd.intros)
+apply(simp)
+done
+
+lemma Posix_CPT2:
+ assumes "v1 \<preceq>r v2" "flat v1 = flat v2"
+ shows "v2 :\<sqsubset>val v1 \<or> v1 = v2"
+using assms
+apply(induct r arbitrary: v1 v2 rule: rexp.induct)
+apply(erule ValOrd.cases)
+apply(simp_all)
+apply(erule ValOrd.cases)
+apply(simp_all)
+apply(erule ValOrd.cases)
+apply(simp_all)
+apply(erule ValOrd.cases)
+apply(simp_all)
+apply(clarify)
+(* HERE *)
+apply(simp)
+apply(subst val_ord_ex_def)
+apply(simp)
+apply(drule_tac x="v2a" in meta_spec)
+apply(rotate_tac 5)
+apply(drule_tac x="v2'" in meta_spec)
+apply(rule_tac x="0#p" in exI)
+apply(rule val_ord_SEQI)
+
+apply(drule_tac r="r1a" in val_ord_SEQ)
+apply(simp)
+apply(auto)[1]
+
+
+lemma Posix_CPT:
+ assumes "v1 :\<sqsubset>val v2" "v1 \<in> CPT r s" "v2 \<in> CPT r s"
+ shows "v1 \<preceq>r v2"
+using assms
+apply(induct r arbitrary: v1 v2 s rule: rexp.induct)
+apply(simp add: CPT_def)
+apply(clarify)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(simp add: CPT_def)
+apply(clarify)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(rule ValOrd.intros)
+apply(simp add: CPT_def)
+apply(clarify)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(rule ValOrd.intros)
+(*SEQ case *)
+apply(simp add: CPT_def)
+apply(clarify)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(clarify)
+apply(erule CPrf.cases)
+apply(simp_all)
+apply(clarify)
+thm val_ord_SEQ
+apply(drule_tac r="r1a" in val_ord_SEQ)
+apply(simp)
+using Prf_CPrf apply blast
+using Prf_CPrf apply blast
+apply(erule disjE)
+apply(rule C2)
+prefer 2
+apply(simp)
+apply(rule C1)
+apply blast
+
+apply(simp add: append_eq_append_conv2)
+apply(clarify)
+apply(auto)[1]
+apply(drule_tac x="v1a" in meta_spec)
+apply(rotate_tac 8)
+apply(drule_tac x="v1b" in meta_spec)
+apply(rotate_tac 8)
+apply(simp)
+
+(* HERE *)
+apply(subst (asm) (3) val_ord_ex_def)
+apply(clarify)
+apply(subst (asm) val_ord_def)
+apply(clarify)
+apply(rule ValOrd.intros)
+
+
+apply(simp add: val_ord_ex_def)
+oops
+
+
+lemma ValOrd_trans:
+ assumes "x \<preceq>r y" "y \<preceq>r z"
+ and "x \<in> CPT r s" "y \<in> CPT r s" "z \<in> CPT r s"
+ shows "x \<preceq>r z"
+using assms
+apply(induct x r y arbitrary: s z rule: ValOrd.induct)
+apply(rotate_tac 2)
+apply(erule ValOrd.cases)
+apply(simp_all)[13]
+apply(rule ValOrd.intros)
+apply(drule_tac x="s" in meta_spec)
+apply(drule_tac x="v1'a" in meta_spec)
+apply(drule_tac meta_mp)
+apply(simp)
+apply(drule_tac meta_mp)
+apply(simp add: CPT_def)
+oops
+
+lemma ValOrd_preorder:
+ "preorder_on (CPT r s) {(v1, v2). v1 \<preceq>r v2 \<and> v1 \<in> (CPT r s) \<and> v2 \<in> (CPT r s)}"
+apply(simp add: preorder_on_def)
+apply(rule conjI)
+apply(simp add: refl_on_def)
+apply(auto)
+apply(rule ValOrd_refl)
+apply(simp add: CPT_def)
+apply(rule Prf_CPrf)
+apply(auto)[1]
+apply(simp add: trans_def)
+apply(auto)
definition ValOrdEq :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<ge>_ _" [100, 100, 100] 100)
where