preserves!
authorChengsong
Sat, 22 Jan 2022 22:57:28 +0000
changeset 395 5bffeacdf17e
parent 394 4b22587fb667
child 396 cc8e231529fb
preserves!
thys2/zre8.sc
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/zre8.sc	Sat Jan 22 22:57:28 2022 +0000
@@ -0,0 +1,542 @@
+// package zre 
+//Zre5: eliminated mems table
+
+
+
+import scala.collection.mutable.{Map => MMap}
+import scala.collection.mutable.{ArrayBuffer => MList}
+//import pprint._
+
+import scala.util.Try
+import pprint._
+
+
+abstract class Val
+case object Empty extends Val
+case class Chr(c: Char) extends Val
+case class Sequ(v1: Val, v2: Val) extends Val
+case class Left(v: Val) extends Val
+case class Right(v: Val) extends Val
+case class Stars(vs: List[Val]) extends Val
+case object DummyFilling extends Val
+
+
+// abstract class Rexp {
+//      def equals(other: Rexp) : Boolean = this.eq(other)
+// }
+abstract class Rexp
+case object ZERO extends Rexp                    // matches nothing
+case object ONE extends Rexp                     // matches an empty string
+case class CHAR(c: Char) extends Rexp            // matches a character c
+case class ALT(r1: Rexp, r2: Rexp) extends Rexp  // alternative
+case class AL1(r1: Rexp) extends Rexp
+case class SEQ(r1: Rexp, r2: Rexp) extends Rexp  // sequence
+case class STAR(r: Rexp) extends Rexp
+case object RTOP extends Rexp
+
+
+//Seq a b --> Seq Seqa Seqb
+//Seq a b --> Sequ chra chrb
+//ALT r1 r2 --> mALT
+//         AltC L   AltC R
+var cyclicPreventionList : Set[Int]= Set()
+abstract class Ctx(var starIters: Int = 0){
+    //starIters = 0
+}
+case object RootC extends Ctx
+case class SeqC( mForMyself:  Mem, processedSibling: List[Val], unpSibling: List[Rexp]) extends Ctx 
+case class AltC( mForMyself:  Mem, wrapper: Val => Val) extends Ctx
+case class StarC(mForMyself:  Mem, vs: List[Val], inside: Rexp) extends Ctx
+
+case class Mem(var parents: MList[Ctx], var result : MList[(Int, Val)])
+
+//AltC(Mem(RootC::Nil, Map()))
+
+
+
+type Zipper = (Val, Mem)
+
+var mems : MMap[(Int, Rexp), Mem] = MMap()
+        //start pos, original regex --> result entry
+
+
+var pos : Int = 0
+
+
+
+//input ..................
+//          ^       ^
+//          p       q
+//          r
+
+//parse r[p...q] --> v
+
+//(a+aa)*
+//aaa
+//[R(Sequ(a, a)), vs]
+//[L(a), L(a), vs]
+def check_before_down(c: Ctx, r: Rexp, starIters: Int = 0) : List[Zipper] = {
+    c.starIters = starIters
+    mems.get((pos, r)) match {
+        case Some(m) => 
+            // c match {
+            //     case StarC(m, vs, inside) => vs.length
+            // }
+            val idx = m.parents.lastIndexWhere(c0 => c0.starIters < c.starIters)
+            if(m.parents.size == 2){
+                println("third parent added")
+                println(simpleCtxDisplay(c))
+                println("the other parents")
+                m.parents.foreach(c00 => println(c00.starIters))
+                println(idx + 1)
+                println("c's star iters: "+ c.starIters)
+                println(s"the others' star iters: ${m.parents(0).starIters}")
+            }
+            m.parents.insert(idx + 1, c)
+            //m.parents = m.parents:::List(c)
+            m.result.find(endPos_value => endPos_value._1 == pos) match {
+                // case Some((i, v)) => 
+                //   original_up(v, c, starIters)
+                case None => 
+                  List()
+            }
+        case None => 
+            val m = Mem(MList(c), MList.empty[(Int, Val)])
+            mems = mems + ((pos, r) -> m)
+            original_down(r, m, starIters)
+    }
+    // val m = Mem(c::Nil, MList.empty[(Int, Val)])
+    // original_down(r, m, d)
+}
+
+//mems  pstart r  --> m parents [(pend, vres), ...]
+//aaa
+//012
+//seq a a 
+//0 a~a --> m ... [(2, Sequ a a)]
+        // c match {
+        //     case StarC(mst, vst, rst) => print(s"StarC $vst\t")
+        //     case SeqC(mse, pr, unp) => print(s"SeqC $unp\t")
+        //     case AltC(mal, w) => print(s"AltC ${w(Empty)}\t")
+        //     case RootC => print("Root")
+        // }
+def reorderCtx(cs: List[Ctx]): List[Ctx] = {
+    Nil
+}
+
+def mem_up(vres: Val, m: Mem, starIters : Int = 0) : List[Zipper] = {
+    m.result += (pos -> vres)
+    //m.parents = m.parents.reverse
+          
+    // if(m.parents.size > 1){//println()
+    //     println()  
+    //     println("each of the contexts")
+    //     m.parents.reverse.foreach (c =>
+    //         println(simpleCtxDisplay(c))
+    //     )
+    //     println("after distinctCtx")
+    //     distinctCtx(m.parents.reverse).foreach(c =>
+    //         println(simpleCtxDisplay(c))
+    //     )
+    //     //println(s"vs is $vss")
+    
+    // }
+    //.distinctBy(zipBackToRegex(_))
+    //TODO: too many arraybuffer->list conversions
+    (m.parents).distinctBy(zipBackToRegex(_)).flatMap((c: Ctx) =>
+        original_up(vres, c, starIters)
+    ).toList
+    // m.parents.reverse.flatMap((c: Ctx) =>
+    //     original_up(vres, c, rec_depth)
+    // )
+    // original_up(vres, m.parents.last, rec_depth)
+}
+
+def original_down(r: Rexp, m: Mem, starIters: Int = 0) : List[Zipper] = (r, m) match {
+    case (CHAR(b), m) => {
+        if (input(pos) == b) {
+            List((Chr(b), m)) 
+        }
+        else 
+            Nil
+    }
+    case (ONE, m) => Nil//mem_up(Empty, m, starIters)
+    case (SEQ(r1, r2), m) =>  
+        // if(nullable(r1)){
+        //     val mprime = Mem(AltC(m, x => x )::Nil, MList.empty[(Int, Val)])
+        //     check_before_down(SeqC(mprime, Nil, List(r2)), r1, starIters) :::
+        //     check_before_down(SeqC(mprime, mkeps(r1)::Nil, Nil), r2, starIters)
+        // }
+        // else
+            check_before_down(SeqC(m, Nil, List(r2)), r1, starIters)
+    case (ALT(r1, r2), m) => 
+        check_before_down(AltC(m, Left(_)), r1, starIters) ::: 
+        check_before_down(AltC(m, Right(_)), r2, starIters)
+    case (STAR(r0), m) =>
+        check_before_down(StarC(m, Nil, r0), r0, starIters) :::
+        mem_up(Stars(Nil), m, starIters)
+    case (_, _) => throw new Exception("original down unexpected r or m")
+}
+
+def original_up(v: Val, c: Ctx, starIters: Int = 0) : List[Zipper] = 
+{
+
+(v, c) match {
+    case (v, SeqC(m, v1::Nil, Nil)) => 
+        mem_up(Sequ(v1, v), m, starIters)
+    case (v, SeqC(m, vs, u1::Nil)) => 
+        check_before_down(SeqC(m, v::vs, Nil), u1, starIters)
+    case (v, AltC(m, wrap)) => m.result.find(tup2 => tup2._1 == pos) match {
+        case Some( (i, vPrime)  ) => 
+            m.result += (i -> wrap(v))
+            Nil
+        case None => 
+            mem_up(wrap(v), m, starIters)
+    } //mem_up(AL1(v), par)
+    //case (v, StarC(m, vs, r0)) => throw new Exception("why not hit starC")
+
+    case (v, RootC) => 
+        Nil
+    case (v, StarC(m, vs, r0) ) => //mem_up(Stars(v::vs), m, starIters) //::: 
+        check_before_down(StarC(m, v::vs, r0), r0, starIters + 1) :::
+        mem_up(Stars((v::vs).reverse), m, starIters)
+    case (_, _) => throw new Exception("hit unexpected context")
+}
+
+}
+
+
+def derive(p: Int, z: Zipper) : List[Zipper] = {
+    pos = p
+    //println(s"z's actual size is ${actualZipperSize(z::Nil)}")
+    
+    z match {
+        case (v, m) => 
+            
+            mem_up(v, m)
+        case _ => throw new Exception("error")
+    }
+}
+//let e' = Seq([]) in 
+//
+def init_zipper(r: Rexp) : Zipper = {
+    val m_top = Mem(MList(RootC), MList.empty[(Int, Val)])
+    val c_top = SeqC(m_top, Nil, r::Nil)
+    val m_r = Mem(MList(c_top), MList.empty[(Int, Val)])
+    println(s"initial zipper is (Empty, $m_r)")
+    (Empty, m_r)//TODO: which val should we start with? Maybe Empty, maybe doesn't matter
+    // val dummyRexp = ONE
+    // val dummyMem = Mem()
+
+}
+
+
+def plug_convert(v: Val, c: Ctx) : List[Val] = 
+{
+
+c match {
+    case RootC => List(v)
+    //TODO: non-binary Seq requires ps.rev
+    case SeqC(m, ps::Nil, Nil) => 
+        plug_mem(Sequ(ps, v), m)
+
+    //TODO: un not nullable--partial values?
+    case SeqC(m, Nil, un::Nil) => 
+        if(nullable(un))
+            plug_mem(Sequ(v, mkeps(un)), m)
+        else
+            Nil
+
+    //TODO: when multiple results stored in m, which one to choose?
+    case AltC(m, wrap) => 
+        plug_mem(wrap(v), m)
+    case StarC(m, vs, r0) => plug_mem(Stars((v::vs).reverse), m)
+}
+
+}
+
+
+var cnt = 0;
+def plug_mem(v: Val, m: Mem) : List[Val] = {
+    m.result += (pos -> v)
+    //TODO: eliminate arraybuffer->list conversion
+    m.parents.flatMap({c =>
+        plug_convert(v, c)
+    }
+    ).toList
+}
+
+def plug_all(zs: List[Zipper]) : List[Val] = {
+    zs.flatMap(z => plug_mem(z._1, z._2))
+}
+
+
+def mkeps(r: Rexp) : Val = r match {
+  case ONE => Empty
+  case ALT(r1, r2) => 
+    if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
+  case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
+  case _ => DummyFilling
+}
+
+def nullable(r: Rexp) : Boolean = r match {
+  case ZERO => false
+  case ONE => true
+  case CHAR(_) => false
+  case ALT(r1, r2) => nullable(r1) || nullable(r2)
+  case SEQ(r1, r2) => nullable(r1) && nullable(r2)
+  case _ => false
+}
+
+
+val tokList : List[Char] = "aab".toList
+var input : List[Char] = tokList
+
+
+
+
+
+
+
+def lexRecurse(zs: List[Zipper], index: Int) : List[Zipper] = {
+    if(index <  input.length )
+        lexRecurse(zs.flatMap(z => derive(index, z) ), index + 1)
+    else 
+        zs
+}
+
+def lex(r: Rexp, s: String) : List[Zipper] = {
+    input = s.toList
+    
+    lexRecurse(init_zipper(r)::Nil,  0)
+}
+
+
+
+implicit def charlist2rexp(s: List[Char]): Rexp = s match {
+    case Nil => ONE
+    case c::Nil => CHAR(c)
+    case c::cs => SEQ(CHAR(c), charlist2rexp(cs))
+}
+implicit def string2Rexp(s: String) : Rexp = charlist2rexp(s.toList)
+
+implicit def RexpOps(r: Rexp) = new {
+    def | (s: Rexp) = ALT(r, s)
+    def ~ (s: Rexp) = SEQ(r, s)
+    def % = STAR(r)
+}
+
+implicit def stringOps(s: String) = new {
+    def | (r: Rexp) = ALT(s, r)
+    def | (r: String) = ALT(s, r)
+    def ~ (r: Rexp) = SEQ(s, r)
+    def ~ (r: String) = SEQ(s, r)
+    def % = STAR(s)
+
+}
+
+//derive(0, init_zipper(re0))
+
+// println(re1s.length)
+// mems.foreach(a => println(a))
+// val re1sPlugged = plug_all(re1s)
+// re1sPlugged.foreach(zipper => {
+//                         println(zipper); 
+//                         println("delimit") 
+//                         })
+                
+// mems.clear()
+// println(mems)
+// println(re0)
+// val re2s = lex(re0, "aab")
+// val re2sPlugged = plug_all(re2s)
+// re2sPlugged.foreach(v => {
+//         val Sequ(Empty, vp) = v
+//         println(vp)
+//     }
+// )
+// val re0 = SEQ(ALT(CHAR('a'), SEQ(CHAR('a'),CHAR('a'))), 
+// ALT(SEQ(CHAR('a'), CHAR('b')), SEQ(CHAR('b'), CHAR('c')) )
+// )
+
+// val (rgraph, re0root) = makeGraphFromObject(re0)
+// val asciir = GraphLayout.renderGraph(rgraph)
+// println("printing out re0")
+// println(asciir)
+// val re1s = lex(re0, "aabc")
+ 
+def actualZipperSize(zs: List[Zipper]) : Int = zs match {
+    case Nil => 0
+    case z::zs1 => countParents(z._2) + actualZipperSize(zs1)
+}
+
+def countParents(m: Mem) : Int = {
+    m.parents.map(c => countGrandParents(c)).sum
+}
+
+def countGrandParents(c: Ctx) : Int = {
+    c match {
+        case RootC => 1
+        case SeqC(m, pr, unp) => countParents(m)
+        case AltC(m, w) => countParents(m)
+        case StarC(m, _, _) => countParents(m)
+    }
+}
+//(a+aa)* \a --> (1 + a)(a+aa)* --> (a+aa)* + (1+a)(a+aa)*
+
+//a(a+aa)* + 1(a+aa)* + (a+aa)*
+
+//a~(a + aa)* \a -> 1 ~ (a + aa)* 
+//va <-----> m --> SeqC(m1, pr, "a") --> AltC(m4, Right)--> StarC(m2, vs, "a" + "aa") --> SeqC(m) ---> Root
+//           ^
+//           ---> AltC(m4, Left) 
+def zipBackToRegex(c: Ctx, r: Rexp = ONE) : Rexp = {
+    c match {
+        case RootC => r
+        case SeqC(m, pr, Nil) => zipBackToRegex(m.parents.head, r)
+        case SeqC(m, pr, unp::Nil) => zipBackToRegex(m.parents.head, SEQ(r, unp))
+        case AltC(m, w) => zipBackToRegex(m.parents.head, r)
+        case StarC(m, vs, r0) => zipBackToRegex(m.parents.head, SEQ(r, STAR(r0)))
+    }
+}
+
+def zipperSimp(z: Zipper) : Unit = z match {
+    case (v, m) => //m.parents = m.parents.distinctBy(c => zipBackToRegex(c))
+}
+
+def distinctCtx(cs: List[Ctx]) : List[Ctx] = cs.distinctBy(c => zipBackToRegex(c))
+
+
+def simpleCtxDisplay(c: Ctx, indent : Int = 0) : String = c match {
+    case SeqC(m, pr, unp) => "Sc[m:" ++ printMem(m, indent + 1) ++ 
+        "pr:" ++ pr.map(v => shortValOutput(v)).mkString(", ") ++ " unp:" ++ unp.map(r2 => shortRexpOutput(r2)).mkString(", ") ++ "]"
+    case AltC(m, w) =>
+        w(Empty) match {
+            case Left(_) => s"Ac(m:${printMem(m, indent + 1)}, Left(_))"
+            case Right(_) => s"Ac(m:${printMem(m, indent + 1)}, Right(_))"
+            case Empty => s"Ac(m:${printMem(m, indent + 1)}, id)"
+        } 
+    case StarC(m, vs, r0) => s"StarC[m:" ++ printMem(m, indent + 1) ++ 
+        "vs:" ++ vs.map(v => shortValOutput(v)).mkString(", ") ++ " r0: " ++ shortRexpOutput(r0)
+    case RootC => "Root"
+    //case AL1(r) => s"(+${shortRexpOutput(r)})"
+    //case STAR(r) => "STAR(" ++ shortRexpOutput(r) ++ ")"
+    //case RTOP => "RTOP"
+  }
+
+def printMem(m: Mem, indent: Int = 0) : String = {
+   "M(par:" ++
+   m.parents.map(c => simpleCtxDisplay(c, indent + 1)).mkString("(",",", ")")  ++
+  (", results:")  ++
+  (for(iRexp <- m.result) 
+    yield iRexp match {case (p: Int, v: Val) => s"$p->${shortValOutput(v)}"}
+  ).mkString("(",",", ")")  ++ 
+   ")" 
+}
+
+def shortRexpOutput(r: Rexp) : String = r match {
+    case CHAR(c) => c.toString
+    case ONE => "1"
+    case ZERO => "0"
+    case SEQ(r1, r2) => "[" ++ shortRexpOutput(r1) ++ "~" ++ shortRexpOutput(r2) ++ "]"
+    case ALT(r1, r2) => "(" ++ shortRexpOutput(r1) ++ "+" ++ shortRexpOutput(r2) ++ ")"
+    case STAR(r) => "[" ++ shortRexpOutput(r) ++ "]*"
+    //case STAR(r) => "STAR(" ++ shortRexpOutput(r) ++ ")"
+    case RTOP => "RTOP"
+  }
+
+def shortValOutput(v: Val) : String = v match {
+    case Left(v) => "L(" ++ shortValOutput(v) ++ ")"
+    case Right(v) => "R(" ++ shortValOutput(v) ++ ")"
+    case Empty => "e"
+    case Sequ(v1, v2) => "[" ++ shortValOutput(v1) ++ "~" ++ shortValOutput(v2) ++ "]"
+    case Chr(a) => a.toString
+    case Stars(vs) => "Stars" ++ vs.map(shortValOutput(_)).mkString("[", ",", "]")
+    case _ => "???"
+}
+
+
+//def crystalizeZipper
+
+for(i <- 1 to 2) {
+    mems.clear()
+println(s"there are $i number of a's")
+val re1 = ("a" | "aa" | "ab").%//(("a" | "b") ~ "c" | ("b" | "e") ~ "c" ) ~ "f"
+val re1Lexed = lex(re1, "a"*i)
+
+//drawZippers(re1Lexed)
+println("size of actual zipper (including memoized contexts")
+println(actualZipperSize(re1Lexed))
+//println(re1Lexed)
+//re1Lexed.foreach(zipperSimp(_))
+//println(actualZipperSize(re1S))
+val re1resPlugged = plug_all(re1Lexed)
+//println(actualZipperSize(re1Lexed))
+
+println("value extracted")
+re1resPlugged.foreach(v => {
+        val Sequ(Empty, vp) = v
+        println(vp)
+}
+)
+
+  val mb = 1024*1024
+val runtime = Runtime.getRuntime
+println("ALL RESULTS IN MB")
+println("** Used Memory:  " + (runtime.totalMemory - runtime.freeMemory) / mb)
+println("** Free Memory:  " + runtime.freeMemory / mb)
+println("** Total Memory: " + runtime.totalMemory / mb)
+println("** Max Memory:   " + runtime.maxMemory / mb)
+
+}
+
+mems.clear()
+val re2 = SEQ(ONE, "a")
+val re2res = lex(re2, "a")
+//lex(1~a, "a") --> lexRecurse((1v, m  (SeqC(m (RootC, Nil), Nil, [1~a] ) )))
+
+
+println(re2res)
+
+val re2resPlugged = plug_all(re2res)
+re2resPlugged.foreach(v => {
+        val Sequ(Empty, vp) = v
+        println(vp)
+}
+)
+
+// println("remaining regex")
+// println(re1ss.flatMap(z => zipBackMem(z._2)))
+
+
+// val re1ssPlugged = plug_all(re1ss)
+// println("each of the values")
+// re1ssPlugged.foreach(v => {
+//         //val Sequ(Empty, vp) = v
+//         //println(vp)
+//         println(v)
+//     }
+// )
+// println(mems.size)
+//println(mems)
+//mems.map({case (ir, m) => if (ir._1 == 1 && ir._2 == CHAR('b')) println(printMem(m)) })
+// println("Mkeps + inj:")
+// println(
+//     mems.get((0, re1)) match {
+//         case Some(m) => printMem(m)
+//         case None => ""
+//     }
+//     )
+
+// println(re1sPlugged)
+//drawZippers(re1s, plugOrNot = false)
+// re1s.foreach{
+//   re1 => 
+//   {
+
+//     drawZippers(derive(1, re1), plugOrNot = true)
+
+//   }
+// }
+
+