more of the paper
authorChristian Urban <christian.urban@kcl.ac.uk>
Mon, 07 Feb 2022 01:11:25 +0000
changeset 418 41a2a3b63853
parent 416 57182b36ec01
child 419 6de6bc551a8b
more of the paper
thys2/Paper/Paper.thy
thys2/Paper/document/root.tex
thys2/SizeBound4.thy
thys2/paper.pdf
--- a/thys2/Paper/Paper.thy	Sun Feb 06 00:02:04 2022 +0000
+++ b/thys2/Paper/Paper.thy	Mon Feb 07 01:11:25 2022 +0000
@@ -17,9 +17,12 @@
 
 abbreviation 
   "der_syn r c \<equiv> der c r"
+abbreviation 
+  "bder_syn r c \<equiv> bder c r"  
 
 notation (latex output)
   der_syn ("_\\_" [79, 1000] 76) and
+  bder_syn ("_\\_" [79, 1000] 76) and
 
   ZERO ("\<^bold>0" 81) and 
   ONE ("\<^bold>1" 81) and 
@@ -54,10 +57,12 @@
   code ("code _" [79] 74) and
   intern ("_\<^latex>\<open>\\mbox{$^\\uparrow$}\<close>" [900] 80) and
   erase ("_\<^latex>\<open>\\mbox{$^\\downarrow$}\<close>" [1000] 74) and
-  bnullable ("nullable\<^latex>\<open>\\mbox{$_b$}\<close> _" [1000] 80) and
-  bmkeps ("mkeps\<^latex>\<open>\\mbox{$_b$}\<close> _" [1000] 80) and
+  bnullable ("bnullable _" [1000] 80) and
+  bmkeps ("bmkeps _" [1000] 80) and
 
-  srewrite ("_\<^latex>\<open>\\mbox{$\\,\\stackrel{s}{\\leadsto}$}\<close> _" [71, 71] 80) 
+  srewrite ("_\<^latex>\<open>\\mbox{$\\,\\stackrel{s}{\\leadsto}$}\<close> _" [71, 71] 80) and
+  rrewrites ("_ \<^latex>\<open>\\mbox{$\\,\\leadsto^*$}\<close> _" [71, 71] 80) and
+  blexer_simp ("blexer\<^sup>+" 1000) 
 
 
 lemma better_retrieve:
@@ -263,7 +268,7 @@
   \end{tabular}
   \end{center}
 
-  \noindent where @{text bs} stands for a bitsequences; @{text r},
+  \noindent where @{text bs} stands for bitsequences; @{text r},
   @{text "r\<^sub>1"} and @{text "r\<^sub>2"} for bitcoded regular
   expressions; and @{text rs} for lists of bitcoded regular
   expressions. The binary alternative @{text "ALT bs r\<^sub>1 r\<^sub>2"}
@@ -271,9 +276,8 @@
   For bitsequences we just use lists made up of the
   constants @{text Z} and @{text S}.  The idea with bitcoded regular
   expressions is to incrementally generate the value information (for
-  example @{text Left} and @{text Right}) as bitsequences
-  as part of the regular expression constructors. 
-  Sulzmann and Lu then define a coding
+  example @{text Left} and @{text Right}) as bitsequences. For this 
+  Sulzmann and Lu define a coding
   function for how values can be coded into bitsequences.
 
   \begin{center}
@@ -297,8 +301,8 @@
   \noindent
   As can be seen, this coding is ``lossy'' in the sense that we do not
   record explicitly character values and also not sequence values (for
-  them we just append two bitsequences). We do, however, record the
-  different alternatives for @{text Left}, respectively @{text Right}, as @{text Z} and
+  them we just append two bitsequences). However, the
+  different alternatives for @{text Left}, respectively @{text Right}, are recorded as @{text Z} and
   @{text S} followed by some bitsequence. Similarly, we use @{text Z} to indicate
   if there is still a value coming in the list of @{text Stars}, whereas @{text S}
   indicates the end of the list. The lossiness makes the process of
@@ -404,55 +408,55 @@
   bitcoded regular expressions, instead of regular expressions.
 
   \begin{center}
-  \begin{tabular}{lcl}
-  $\textit{bnullable}\,(\textit{ZERO})$ & $\dn$ & $\textit{false}$ \textbf{fix}\\
+  \begin{tabular}{@ {}c@ {}c@ {}}
+  \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
+  $\textit{bnullable}\,(\textit{ZERO})$ & $\dn$ & $\textit{false}$\\
   $\textit{bnullable}\,(\textit{ONE}\,bs)$ & $\dn$ & $\textit{true}$\\
   $\textit{bnullable}\,(\textit{CHAR}\,bs\,c)$ & $\dn$ & $\textit{false}$\\
-  $\textit{bnullable}\,(\textit{ALT}\,bs\,a_1\,a_2)$ & $\dn$ &
-     $\textit{bnullable}\,a_1\vee \textit{bnullable}\,a_2$\\
-  $\textit{bnullable}\,(\textit{SEQ}\,bs\,a_1\,a_2)$ & $\dn$ &
-     $\textit{bnullable}\,a_1\wedge \textit{bnullable}\,a_2$\\
-  $\textit{bnullable}\,(\textit{STAR}\,bs\,a)$ & $\dn$ &
+  $\textit{bnullable}\,(\textit{ALTs}\,bs\,\rs)$ & $\dn$ &
+     $\exists\, r \in \rs. \,\textit{bnullable}\,r$\\
+  $\textit{bnullable}\,(\textit{SEQ}\,bs\,r_1\,r_2)$ & $\dn$ &
+     $\textit{bnullable}\,r_1\wedge \textit{bnullable}\,r_2$\\
+  $\textit{bnullable}\,(\textit{STAR}\,bs\,r)$ & $\dn$ &
      $\textit{true}$
-  \end{tabular}    
-  \end{center}    
-
-  \begin{center}
-  \begin{tabular}{lcl}
-  $\textit{bmkeps}\,(\textit{ONE}\,bs)$ & $\dn$ & $bs$ \textbf{fix}\\
-  $\textit{bmkeps}\,(\textit{ALT}\,bs\,a_1\,a_2)$ & $\dn$ &
-     $\textit{if}\;\textit{bnullable}\,a_1$\\
-  & &$\textit{then}\;bs\,@\,\textit{bmkeps}\,a_1$\\
-  & &$\textit{else}\;bs\,@\,\textit{bmkeps}\,a_2$\\
-  $\textit{bmkeps}\,(\textit{SEQ}\,bs\,a_1\,a_2)$ & $\dn$ &
-     $bs \,@\,\textit{bmkeps}\,a_1\,@\, \textit{bmkeps}\,a_2$\\
-  $\textit{bmkeps}\,(\textit{STAR}\,bs\,a)$ & $\dn$ &
+  \end{tabular}
+  &
+  \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
+  $\textit{bmkeps}\,(\textit{ONE}\,bs)$ & $\dn$ & $bs$\\
+  $\textit{bmkeps}\,(\textit{ALTs}\,bs\,r\!::\!\rs)$ & $\dn$ &
+     $\textit{if}\;\textit{bnullable}\,r$\\
+  & &$\textit{then}\;bs\,@\,\textit{bmkeps}\,r$\\
+  & &$\textit{else}\;bs\,@\,\textit{bmkeps}\,\rs$\\
+  $\textit{bmkeps}\,(\textit{SEQ}\,bs\,r_1\,r_2)$ & $\dn$ &\\
+  \multicolumn{3}{r}{$bs \,@\,\textit{bmkeps}\,r_1\,@\, \textit{bmkeps}\,r_2$}\\
+  $\textit{bmkeps}\,(\textit{STAR}\,bs\,r)$ & $\dn$ &
      $bs \,@\, [\S]$
-  \end{tabular}    
+  \end{tabular}
+  \end{tabular}
   \end{center}    
  
 
   \noindent
   The key function in the bitcoded algorithm is the derivative of an
-  annotated regular expression. This derivative calculates the
-  derivative but at the same time also the incremental part that
-  contributes to constructing a value.	
+  bitcoded regular expression. This derivative calculates the
+  derivative but at the same time also the incremental part of bitsequences
+  that contribute to constructing a POSIX value.	
 
   \begin{center}
   \begin{tabular}{@ {}lcl@ {}}
-  $(\textit{ZERO})\backslash c$ & $\dn$ & $\textit{ZERO}$ \textbf{fix}\\  
+  $(\textit{ZERO})\backslash c$ & $\dn$ & $\textit{ZERO}$ \\  
   $(\textit{ONE}\;bs)\backslash c$ & $\dn$ & $\textit{ZERO}$\\  
   $(\textit{CHAR}\;bs\,d)\backslash c$ & $\dn$ &
         $\textit{if}\;c=d\; \;\textit{then}\;
          \textit{ONE}\;bs\;\textit{else}\;\textit{ZERO}$\\  
-  $(\textit{ALT}\;bs\,a_1\,a_2)\backslash c$ & $\dn$ &
-        $\textit{ALT}\,bs\,(a_1\backslash c)\,(a_2\backslash c)$\\
-  $(\textit{SEQ}\;bs\,a_1\,a_2)\backslash c$ & $\dn$ &
-     $\textit{if}\;\textit{bnullable}\,a_1$\\
-  & &$\textit{then}\;\textit{ALT}\,bs\,(\textit{SEQ}\,[]\,(a_1\backslash c)\,a_2)$\\
-  & &$\phantom{\textit{then}\;\textit{ALT}\,bs\,}(\textit{fuse}\,(\textit{bmkeps}\,a_1)\,(a_2\backslash c))$\\
-  & &$\textit{else}\;\textit{SEQ}\,bs\,(a_1\backslash c)\,a_2$\\
-  $(\textit{STAR}\,bs\,a)\backslash c$ & $\dn$ &
+  $(\textit{ALTs}\;bs\,\rs)\backslash c$ & $\dn$ &
+        $\textit{ALTs}\,bs\,(\mathit{map}\,(\_\backslash c)\,\rs)$\\
+  $(\textit{SEQ}\;bs\,r_1\,r_2)\backslash c$ & $\dn$ &
+     $\textit{if}\;\textit{bnullable}\,r_1$\\
+  & &$\textit{then}\;\textit{ALT}\,bs\,(\textit{SEQ}\,[]\,(r_1\backslash c)\,r_2)$\\
+  & &$\phantom{\textit{then}\;\textit{ALT}\,bs\,}(\textit{fuse}\,(\textit{bmkeps}\,r_1)\,(r_2\backslash c))$\\
+  & &$\textit{else}\;\textit{SEQ}\,bs\,(r_1\backslash c)\,r_2$\\
+  $(\textit{STAR}\,bs\,r)\backslash c$ & $\dn$ &
       $\textit{SEQ}\;bs\,(\textit{fuse}\, [\Z] (r\backslash c))\,
        (\textit{STAR}\,[]\,r)$
   \end{tabular}    
@@ -460,66 +464,32 @@
 
 
   \noindent
-  This function can also be extended to strings, written $a\backslash s$,
+  This function can also be extended to strings, written $r\backslash s$,
   just like the standard derivative.  We omit the details. Finally we
-  can define Sulzmann and Lu's bitcoded lexer, which we call \textit{blexer}: 
+  can define Sulzmann and Lu's bitcoded lexer, which we call \textit{blexer}:
+
+  \begin{center}
+\begin{tabular}{lcl}
+  $\textit{blexer}\;r\,s$ & $\dn$ &
+      $\textit{let}\;r_{der} = (r^\uparrow)\backslash s\;\textit{in}$\\                
+  & & $\;\;\;\;\textit{if}\; \textit{bnullable}(r_{der}) \;\;\textit{then}\;\textit{decode}\,(\textit{bmkeps}\,r_{der})\,r
+       \;\;\textit{else}\;\textit{None}$
+\end{tabular}
+\end{center}
 
   \noindent
 This bitcoded lexer first internalises the regular expression $r$ and then
-builds the annotated derivative according to $s$. If the derivative is
-nullable, then it extracts the bitcoded value using the
-$\textit{bmkeps}$ function. Finally it decodes the bitcoded value.  If
+builds the bitcoded derivative according to $s$. If the derivative is
+(b)nullable the string is in the language of $r$ and it extracts the bitsequence using the
+$\textit{bmkeps}$ function. Finally it decodes the bitsequence into a value.  If
 the derivative is \emph{not} nullable, then $\textit{None}$ is
-returned. The task is to show that this way of calculating a value
+returned. We can show that this way of calculating a value
 generates the same result as with \textit{lexer}.
 
-Before we can proceed we need to define a function, called
-\textit{retrieve}, which Sulzmann and Lu introduced for the proof.
-
-\textbf{fix}
-
-\noindent
-The idea behind this function is to retrieve a possibly partial
-bitcode from an annotated regular expression, where the retrieval is
-guided by a value.  For example if the value is $\Left$ then we
-descend into the left-hand side of an alternative (annotated) regular
-expression in order to assemble the bitcode. Similarly for
-$\Right$. The property we can show is that for a given $v$ and $r$
-with $\vdash v : r$, the retrieved bitsequence from the internalised
-regular expression is equal to the bitcoded version of $v$.
-
-\begin{lemma}\label{retrievecode}
-If $\vdash v : r$ then $\textit{code}\, v = \textit{retrieve}\,(r^\uparrow)\,v$.
-\end{lemma}
-
-*}
+Before we can proceed we need to define a helper function, called
+\textit{retrieve}, which Sulzmann and Lu introduced for the correctness proof.
 
-text {*
-  There is also a corresponding decoding function that takes a bitsequence
-  and generates back a value. However, since the bitsequences are a ``lossy''
-  coding (@{term Seq}s are not coded) the decoding function depends also
-  on a regular expression in order to decode values. 
-
-
-
-
-  The idea of the bitcodes is to annotate them to regular expressions and generate values
-  incrementally. The bitcodes can be read off from the @{text breg} and then decoded into a value.
-
-  \begin{center}
-  \begin{tabular}{lcl}
-  @{term breg} & $::=$ & @{term "AZERO"}\\
-               & $\mid$ & @{term "AONE bs"}\\
-               & $\mid$ & @{term "ACHAR bs c"}\\
-               & $\mid$ & @{term "AALTs bs rs"}\\
-               & $\mid$ & @{term "ASEQ bs r\<^sub>1 r\<^sub>2"}\\
-               & $\mid$ & @{term "ASTAR bs r"}
-  \end{tabular}
-  \end{center}
-
-
-
-  \begin{center}
+\begin{center}
   \begin{tabular}{lcl}
   @{thm (lhs) retrieve.simps(1)} & $\dn$ & @{thm (rhs) retrieve.simps(1)}\\
   @{thm (lhs) retrieve.simps(2)} & $\dn$ & @{thm (rhs) retrieve.simps(2)}\\
@@ -533,22 +503,171 @@
   \end{tabular}
   \end{center}
 
+\noindent
+The idea behind this function is to retrieve a possibly partial
+bitcode from a bitcoded regular expression, where the retrieval is
+guided by a value.  For example if the value is $\Left$ then we
+descend into the left-hand side of an alternative in order to
+assemble the bitcode. Similarly for
+$\Right$. The property we can show is that for a given $v$ and $r$
+with $\vdash v : r$, the retrieved bitsequence from the internalised
+regular expression is equal to the bitcoded version of $v$.
 
-  \begin{theorem}
-  @{thm blexer_correctness} 
-  \end{theorem}
+\begin{lemma}\label{retrievecode}
+If $\vdash v : r$ then $\textit{code}\, v = \textit{retrieve}\,(r^\uparrow)\,v$.
+\end{lemma}
+
+\noindent
+We also need some auxiliary facts about how the bitcoded operations
+relate to the ``standard'' operations on regular expressions. For
+example if we build a bitcoded derivative and erase the result, this
+is the same as if we first erase the bitcoded regular expression and
+then perform the ``standard'' derivative operation.
+
+\begin{lemma}\label{bnullable}\mbox{}\smallskip\\
+  \begin{tabular}{ll}
+\textit{(1)} & $(a\backslash s)^\downarrow = (a^\downarrow)\backslash s$\\    
+\textit{(2)} & $\textit{bnullable}(a)$ iff $\textit{nullable}(a^\downarrow)$\\
+\textit{(3)} & $\textit{bmkeps}(a) = \textit{retrieve}\,a\,(\textit{mkeps}\,(a^\downarrow))$ provided $\textit{nullable}(a^\downarrow)$.
+\end{tabular}  
+\end{lemma}
+
+\begin{proof}
+  All properties are by induction on annotated regular expressions. There are no
+  interesting cases.
+\end{proof}
+
+\noindent
+This brings us to our main lemma in this section: if we build a
+derivative, say $r\backslash s$ and have a value, say $v$, inhabited
+by this derivative, then we can produce the result $\lexer$ generates
+by applying this value to the stacked-up injection functions
+$\textit{flex}$ assembles. The lemma establishes that this is the same
+value as if we build the annotated derivative $r^\uparrow\backslash s$
+and then retrieve the corresponding bitcoded version, followed by a
+decoding step.
+
+\begin{lemma}[Main Lemma]\label{mainlemma}\it
+If $\vdash v : r\backslash s$ then 
+\[\textit{Some}\,(\textit{flex}\,r\,\textit{id}\,s\,v) =
+  \textit{decode}(\textit{retrieve}\,(r^\uparrow \backslash s)\,v)\,r\]
+\end{lemma}  
+
+\begin{proof}
+  This can be proved by induction on $s$ and generalising over
+  $v$. The interesting point is that we need to prove this in the
+  reverse direction for $s$. This means instead of cases $[]$ and
+  $c\!::\!s$, we have cases $[]$ and $s\,@\,[c]$ where we unravel the
+  string from the back.\footnote{Isabelle/HOL provides an induction principle
+    for this way of performing the induction.}
+
+  The case for $[]$ is routine using Lemmas~\ref{codedecode}
+  and~\ref{retrievecode}. In the case $s\,@\,[c]$, we can infer from
+  the assumption that $\vdash v : (r\backslash s)\backslash c$
+  holds. Hence by Lemma~\ref{Posix2} we know that 
+  (*) $\vdash \inj\,(r\backslash s)\,c\,v : r\backslash s$ holds too.
+  By definition of $\textit{flex}$ we can unfold the left-hand side
+  to be
+  \[
+    \textit{Some}\,(\textit{flex}\;r\,\textit{id}\,(s\,@\,[c])\,v) =
+    \textit{Some}\,(\textit{flex}\;r\,\textit{id}\,s\,(\inj\,(r\backslash s)\,c\,v))  
+  \]  
+
+  \noindent
+  By induction hypothesis and (*) we can rewrite the right-hand side to
+
+  \[
+    \textit{decode}\,(\textit{retrieve}\,(r^\uparrow\backslash s)\;
+    (\inj\,(r\backslash s)\,c\,\,v))\,r
+  \]
+
+  \noindent
+  which is equal to
+  $\textit{decode}\,(\textit{retrieve}\, (r^\uparrow\backslash
+  (s\,@\,[c]))\,v)\,r$ as required. The last rewrite step is possible
+  because we generalised over $v$ in our induction.
+\end{proof}  
+
+\noindent
+With this lemma in place, we can prove the correctness of \textit{blexer} such
+that it produces the same result as \textit{lexer}.
 
 
-  bitcoded regexes / decoding / bmkeps
-  gets rid of the second phase (only single phase)   
-  correctness
+\begin{theorem}
+$\textit{lexer}\,r\,s = \textit{blexer}\,r\,s$
+\end{theorem}  
+
+\begin{proof}
+  We can first expand both sides using Lemma~\ref{flex} and the
+  definition of \textit{blexer}. This gives us two
+  \textit{if}-statements, which we need to show to be equal. By 
+  Lemma~\ref{bnullable}\textit{(2)} we know the \textit{if}-tests coincide:
+  \[
+    \textit{bnullable}(r^\uparrow\backslash s) \;\textit{iff}\;
+    \nullable(r\backslash s)
+  \]
+
+  \noindent
+  For the \textit{if}-branch suppose $r_d \dn r^\uparrow\backslash s$ and
+  $d \dn r\backslash s$. We have (*) $\nullable\,d$. We can then show
+  by Lemma~\ref{bnullable}\textit{(3)} that
+  %
+  \[
+    \textit{decode}(\textit{bmkeps}\,r_d)\,r =
+    \textit{decode}(\textit{retrieve}\,a\,(\textit{mkeps}\,d))\,r
+  \]
+
+  \noindent
+  where the right-hand side is equal to
+  $\textit{Some}\,(\textit{flex}\,r\,\textit{id}\,s\,(\textit{mkeps}\,
+  d))$ by Lemma~\ref{mainlemma} (we know
+  $\vdash \textit{mkeps}\,d : d$ by (*)).  This shows the
+  \textit{if}-branches return the same value. In the
+  \textit{else}-branches both \textit{lexer} and \textit{blexer} return
+  \textit{None}. Therefore we can conclude the proof.
+\end{proof}  
+
+\noindent
+This establishes that the bitcoded algorithm by Sulzmann
+and Lu without simplification produces correct results. This was
+only conjectured in their paper \cite{Sulzmann2014}. The next step
+is to add simplifications.
+
 *}
 
 
 section {* Simplification *}
 
 text {*
-     Sulzmann \& Lu apply simplification via a fixpoint operation; also does not use erase to filter out duplicates.
+
+     \begin{lemma}
+     @{thm[mode=IfThen] bnullable0(1)[of "r\<^sub>1" "r\<^sub>2"]}
+     \end{lemma}
+
+
+     \begin{lemma}
+     @{thm[mode=IfThen] rewrite_bmkeps_aux(1)[of "r\<^sub>1" "r\<^sub>2"]}
+     \end{lemma}
+
+     \begin{lemma}
+     @{thm[mode=IfThen] rewrites_to_bsimp}
+     \end{lemma}
+
+     \begin{lemma}
+     @{thm[mode=IfThen] rewrite_preserves_bder(1)[of "r\<^sub>1" "r\<^sub>2"]}
+     \end{lemma}
+
+     \begin{lemma}
+     @{thm[mode=IfThen] central}
+     \end{lemma}
+
+     \begin{theorem}
+     @{thm[mode=IfThen] main_blexer_simp}
+     \end{theorem}
+
+     Sulzmann \& Lu apply simplification via a fixpoint operation
+
+     ; also does not use erase to filter out duplicates.
   
    not direct correspondence with PDERs, because of example
    problem with retrieve 
--- a/thys2/Paper/document/root.tex	Sun Feb 06 00:02:04 2022 +0000
+++ b/thys2/Paper/document/root.tex	Mon Feb 07 01:11:25 2022 +0000
@@ -49,7 +49,7 @@
 \def\S{\mathit{S}}
 \newcommand{\ZERO}{\mbox{\bf 0}}
 \newcommand{\ONE}{\mbox{\bf 1}}
-
+\def\rs{\mathit{rs}}
 
 \def\Brz{Brzozowski}
 \def\der{\backslash}
@@ -83,17 +83,19 @@
   of the regular expression.  The purpose of the bitcodes is to generate POSIX values incrementally while
   derivatives are calculated. They also help with designing
   an ``aggressive'' simplification function that keeps the size of
-  derivatives small. Without simplification the size derivatives can grow
-  exponentially resulting in an extremely slow lexing algorithm.  In this
+  derivatives finite. Without simplification the size derivatives can grow
+  arbitrarily big resulting in an extremely slow lexing algorithm.  In this
   paper we describe a variant of Sulzmann and Lu's algorithm: Our
   algorithm is a recursive functional program, whereas Sulzmann
   and Lu's version involves a fixpoint construction. We \textit{(i)}
   prove in Isabelle/HOL that our program is correct and generates
-  unique POSIX values; we also \textit{(ii)} establish a polynomial
-  bound for the size of the derivatives. The size can be seen as a
-  proxy measure for the efficiency of the lexing algorithm: because of
-  the polynomial bound our algorithm does not suffer from
-  the exponential blowup in earlier works.
+  unique POSIX values; we also \textit{(ii)} establish a finite
+  bound for the size of the derivatives.
+
+  %The size can be seen as a
+  %proxy measure for the efficiency of the lexing algorithm: because of
+  %the polynomial bound our algorithm does not suffer from
+  %the exponential blowup in earlier works.
   
   % Brzozowski introduced the notion of derivatives for regular
   % expressions. They can be used for a very simple regular expression
--- a/thys2/SizeBound4.thy	Sun Feb 06 00:02:04 2022 +0000
+++ b/thys2/SizeBound4.thy	Mon Feb 07 01:11:25 2022 +0000
@@ -179,7 +179,7 @@
 | "bmkeps(ASEQ bs r1 r2) = bs @ (bmkeps r1) @ (bmkeps r2)"
 | "bmkeps(AALTs bs rs) = bs @ (bmkepss rs)"
 | "bmkeps(ASTAR bs r) = bs @ [S]"
-| "bmkepss [] = []"
+(*| "bmkepss [] = []"*)
 | "bmkepss (r # rs) = (if bnullable(r) then (bmkeps r) else (bmkepss rs))"
 
 lemma bmkepss1:
@@ -849,7 +849,7 @@
   have as1: "L(erase a2) \<subseteq> L(erase a1)" by fact
   have as3: "bnullables (rsa @ [a1] @ rsb @ [a2] @ rsc)" by fact
   show "bmkepss (rsa @ [a1] @ rsb @ [a2] @ rsc) = bmkepss (rsa @ [a1] @ rsb @ rsc)" using as1 as3
-    by (smt (verit, ccfv_SIG) append_Cons bmkepss.simps(2) bmkepss1 bmkepss2 bnullable_correctness nullable_correctness subset_eq)
+    by (smt (verit, ccfv_SIG) append_Cons bmkepss.simps(1) bmkepss1 bmkepss2 bnullable_correctness nullable_correctness subset_eq)
 (*next 
   case (extra bs0 bs1 r1 bs2 r2 bs4 bs3)
   then show ?case 
Binary file thys2/paper.pdf has changed