exps/Attic/lex_blex_Frankensteined.scala
author Chengsong
Mon, 03 Oct 2022 02:08:49 +0100
changeset 609 61139fdddae0
parent 310 c090baa7059d
permissions -rw-r--r--
chap1 totally done

package RexpRelated
import scala.language.implicitConversions    
import scala.language.reflectiveCalls
import scala.annotation.tailrec   
import scala.util.Try

abstract class Bit
case object Z extends Bit
case object S extends Bit
case class C(c: Char) extends Bit


abstract class Rexp 
case object ZERO extends Rexp
case object ONE extends Rexp
case class PRED(f: Char => Boolean) extends Rexp
case class ALTS(rs: List[Rexp]) extends Rexp 
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp 
case class STAR(r: Rexp) extends Rexp 
case class RECD(x: String, r: Rexp) extends Rexp



object Rexp{
  type Bits = List[Bit]
  // abbreviations
  def CHAR(c: Char) = PRED(_ == c)
  def ALT(r1: Rexp, r2: Rexp) = ALTS(List(r1, r2))
  def PLUS(r: Rexp) = SEQ(r, STAR(r))
  def AALT(bs: Bits, r1: ARexp, r2: ARexp) = AALTS(bs, List(r1, r2))


  def distinctBy[B, C](xs: List[B], f: B => C, acc: List[C] = Nil): List[B] = xs match {
    case Nil => Nil
    case (x::xs) => {
      val res = f(x)
      if (acc.contains(res)) distinctBy(xs, f, acc)  
      else x::distinctBy(xs, f, res::acc)
    }
  } 
  // some convenience for typing in regular expressions
  def charlist2rexp(s : List[Char]): Rexp = s match {
    case Nil => ONE
    case c::Nil => CHAR(c)
    case c::s => SEQ(CHAR(c), charlist2rexp(s))
  }
  implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)

  implicit def RexpOps(r: Rexp) = new {
    def | (s: Rexp) = ALT(r, s)
    def % = STAR(r)
    def ~ (s: Rexp) = SEQ(r, s)
  }

  implicit def stringOps(s: String) = new {
    def | (r: Rexp) = ALT(s, r)
    def | (r: String) = ALT(s, r)
    def % = STAR(s)
    def ~ (r: Rexp) = SEQ(s, r)
    def ~ (r: String) = SEQ(s, r)
    def $ (r: Rexp) = RECD(s, r)
  }

  // translation into ARexps
  def fuse(bs: Bits, r: ARexp) : ARexp = r match {
    case AZERO => AZERO
    case AONE(cs) => AONE(bs ++ cs)
    case APRED(cs, f) => APRED(bs ++ cs, f)
    case AALTS(cs, rs) => AALTS(bs ++ cs, rs)
    case ASEQ(cs, r1, r2) => ASEQ(bs ++ cs, r1, r2)
    case ASTAR(cs, r) => ASTAR(bs ++ cs, r)
  }

  def internalise(r: Rexp) : ARexp = r match {
    case ZERO => AZERO
    case ONE => AONE(Nil)
    case PRED(f) => APRED(Nil, f)
    case ALTS(List(r1, r2)) => 
      AALTS(Nil, List(fuse(List(Z), internalise(r1)), fuse(List(S), internalise(r2))))
    case ALTS(r1::rs) => {
      val AALTS(Nil, rs2) = internalise(ALTS(rs))
      AALTS(Nil, fuse(List(Z), internalise(r1)) :: rs2.map(fuse(List(S), _)))
    }
    case SEQ(r1, r2) => ASEQ(Nil, internalise(r1), internalise(r2))
    case STAR(r) => ASTAR(Nil, internalise(r))
    case RECD(x, r) => internalise(r)
  }

  internalise(("a" | "ab") ~ ("b" | ""))

  def decode_aux(r: Rexp, bs: Bits) : (Val, Bits) = (r, bs) match {
    case (ONE, bs) => (Empty, bs)
    case (PRED(f), C(c)::bs) => (Chr(c), bs)
    case (ALTS(r::Nil), bs) => decode_aux(r, bs)
    case (ALTS(rs), bs) => bs match {
      case Z::bs1 => {
        val (v, bs2) = decode_aux(rs.head, bs1)
        (Left(v), bs2)
      }
      case S::bs1 => {
        val (v, bs2) = decode_aux(ALTS(rs.tail), bs1)
        (Right(v), bs2)			
      }
    }
    case (SEQ(r1, r2), bs) => {
      val (v1, bs1) = decode_aux(r1, bs)
      val (v2, bs2) = decode_aux(r2, bs1)
      (Sequ(v1, v2), bs2)
    }
    case (STAR(r1), S::bs) => {
      val (v, bs1) = decode_aux(r1, bs)
      //println(v)
      val (Stars(vs), bs2) = decode_aux(STAR(r1), bs1)
      (Stars(v::vs), bs2)
    }
    case (STAR(_), Z::bs) => (Stars(Nil), bs)
    case (RECD(x, r1), bs) => {
      val (v, bs1) = decode_aux(r1, bs)
      (Rec(x, v), bs1)
    }
  }

  def decode(r: Rexp, bs: Bits) = decode_aux(r, bs) match {
    case (v, Nil) => v
    case _ => throw new Exception("Not decodable")
  }


  //erase function: extracts the regx from Aregex
  def erase(r:ARexp): Rexp = r match{
    case AZERO => ZERO
    case AONE(_) => ONE
    case APRED(bs, f) => PRED(f)
    case AALTS(bs, rs) => ALTS(rs.map(erase(_)))
    case ASEQ(bs, r1, r2) => SEQ (erase(r1), erase(r2))
    case ASTAR(cs, r)=> STAR(erase(r))
  }

  //--------------------------------------------------------------------------------------------------------START OF NON-BITCODE PART
  // nullable function: tests whether the regular 
  // expression can recognise the empty string
  def nullable (r: Rexp) : Boolean = r match {
    case ZERO => false
    case ONE => true
    case PRED(_) => false
    case ALTS(rs) => rs.exists(nullable)
    case SEQ(r1, r2) => nullable(r1) && nullable(r2)
    case STAR(_) => true
    case RECD(_, r) => nullable(r)
    //case PLUS(r) => nullable(r)
  }

  // derivative of a regular expression w.r.t. a character
  def der (c: Char, r: Rexp) : Rexp = r match {
    case ZERO => ZERO
    case ONE => ZERO
    case PRED(f) => if (f(c)) ONE else ZERO
    case ALTS(List(r1, r2)) => ALTS(List(der(c, r1), der(c, r2)))
    case SEQ(r1, r2) => 
      if (nullable(r1)) ALTS(List(SEQ(der(c, r1), r2), der(c, r2)))
      else SEQ(der(c, r1), r2)
    case STAR(r) => SEQ(der(c, r), STAR(r))
    case RECD(_, r1) => der(c, r1)
    //case PLUS(r) => SEQ(der(c, r), STAR(r))
  }

  def flatten(v: Val) : String = v match {
    case Empty => ""
    case Chr(c) => c.toString
    case Left(v) => flatten(v)
    case Right(v) => flatten(v)
    case Sequ(v1, v2) => flatten(v1) + flatten(v2)
    case Stars(vs) => vs.map(flatten).mkString
    case Rec(_, v) => flatten(v)
  }

  // extracts an environment from a value
  def env(v: Val) : List[(String, String)] = v match {
    case Empty => Nil
    case Chr(c) => Nil
    case Left(v) => env(v)
    case Right(v) => env(v)
    case Sequ(v1, v2) => env(v1) ::: env(v2)
    case Stars(vs) => vs.flatMap(env)
    case Rec(x, v) => (x, flatten(v))::env(v)
  }


  // injection part
  def mkeps(r: Rexp) : Val = r match {
    case ONE => Empty
    case ALTS(List(r1, r2)) => 
      if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
    case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
    case STAR(r) => Stars(Nil)
    case RECD(x, r) => Rec(x, mkeps(r))
    //case PLUS(r) => Stars(List(mkeps(r)))
  }

  def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
    case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
    case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
    case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
    case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
    case (ALTS(List(r1, r2)), Left(v1)) => Left(inj(r1, c, v1))
    case (ALTS(List(r1, r2)), Right(v2)) => Right(inj(r2, c, v2))
    case (PRED(_), Empty) => Chr(c) 
    case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))
    //case (PLUS(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
  }
  def lex(r: Rexp, s: List[Char]) : Val = s match {
    case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
    case c::cs => inj(r, c, lex(der(c, r), cs))
  }

  def lexing(r: Rexp, s: String) : Val = lex(r, s.toList)

  // some "rectification" functions for simplification
  def F_ID(v: Val): Val = v
  def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
  def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
  def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
    case Right(v) => Right(f2(v))
    case Left(v) => Left(f1(v))
  }
  def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
    case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))
  }
  def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) = 
    (v:Val) => Sequ(f1(Empty), f2(v))
  def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) = 
    (v:Val) => Sequ(f1(v), f2(Empty))
  def F_RECD(f: Val => Val) = (v:Val) => v match {
    case Rec(x, v) => Rec(x, f(v))
  }
  def F_ERROR(v: Val): Val = throw new Exception("error")

  // simplification of regular expressions returning also an
  // rectification function; no simplification under STAR 
  def simp(r: Rexp): (Rexp, Val => Val) = r match {
    case ALTS(List(r1, r2)) => {
      val (r1s, f1s) = simp(r1)
      val (r2s, f2s) = simp(r2)
      (r1s, r2s) match {
        case (ZERO, _) => (r2s, F_RIGHT(f2s))
        case (_, ZERO) => (r1s, F_LEFT(f1s))
        case _ => if (r1s == r2s) (r1s, F_LEFT(f1s))
                  else (ALTS(List(r1s, r2s)), F_ALT(f1s, f2s)) 
      }
    }
    case SEQ(r1, r2) => {
      val (r1s, f1s) = simp(r1)
      val (r2s, f2s) = simp(r2)
      (r1s, r2s) match {
        case (ZERO, _) => (ZERO, F_ERROR)
        case (_, ZERO) => (ZERO, F_ERROR)
        case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s))
        case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s))
        case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))
      }
    }
    case RECD(x, r1) => {
      val (r1s, f1s) = simp(r1)
      (RECD(x, r1s), F_RECD(f1s))
    }
    case r => (r, F_ID)
  }
  /*
  val each_simp_time = scala.collection.mutable.ArrayBuffer.empty[Long]
  val each_simp_timeb = scala.collection.mutable.ArrayBuffer.empty[Long]
  */
  def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
    case Nil => {
      if (nullable(r)) {
        mkeps(r) 
      }
      else throw new Exception("Not matched")
    }
    case c::cs => {
      val (r_simp, f_simp) = simp(der(c, r))
      inj(r, c, f_simp(lex_simp(r_simp, cs)))
    }
  }

  def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList)

  //println(lexing_simp(("a" | "ab") ~ ("b" | ""), "ab"))

  // filters out all white spaces
  def tokenise(r: Rexp, s: String) = 
    env(lexing_simp(r, s)).filterNot { _._1 == "w"}


  //reads the string from a file 
  def fromFile(name: String) : String = 
    io.Source.fromFile(name).mkString

  def tokenise_file(r: Rexp, name: String) = 
    tokenise(r, fromFile(name))
  
  //   Testing
  //============

  def time[T](code: => T) = {
    val start = System.nanoTime()
    val result = code
    val end = System.nanoTime()
    println((end - start)/1.0e9)
    result
  }

  //--------------------------------------------------------------------------------------------------------END OF NON-BITCODE PART

  // bnullable function: tests whether the aregular 
  // expression can recognise the empty string
  def bnullable (r: ARexp) : Boolean = r match {
    case AZERO => false
    case AONE(_) => true
    case APRED(_,_) => false
    case AALTS(_, rs) => rs.exists(bnullable)
    case ASEQ(_, r1, r2) => bnullable(r1) && bnullable(r2)
    case ASTAR(_, _) => true
  }

  def mkepsBC(r: ARexp) : Bits = r match {
    case AONE(bs) => bs
    case AALTS(bs, rs) => {
      val n = rs.indexWhere(bnullable)
      bs ++ mkepsBC(rs(n))
    }
    case ASEQ(bs, r1, r2) => bs ++ mkepsBC(r1) ++ mkepsBC(r2)
    case ASTAR(bs, r) => bs ++ List(Z)
  }

  // derivative of a regular expression w.r.t. a character
  def bder(c: Char, r: ARexp) : ARexp = r match {
    case AZERO => AZERO
    case AONE(_) => AZERO
    case APRED(bs, f) => if (f(c)) AONE(bs:::List(C(c))) else AZERO
    case AALTS(bs, rs) => AALTS(bs, rs.map(bder(c, _)))
    case ASEQ(bs, r1, r2) => 
      if (bnullable(r1)) AALT(bs, ASEQ(Nil, bder(c, r1), r2), fuse(mkepsBC(r1), bder(c, r2)))
      else ASEQ(bs, bder(c, r1), r2)
    case ASTAR(bs, r) => ASEQ(bs, fuse(List(S), bder(c, r)), ASTAR(Nil, r))
  }


  def ders (s: List[Char], r: Rexp) : Rexp = s match {
    case Nil => r
    case c::s => ders(s, der(c, r))
  }

  // derivative w.r.t. a string (iterates bder)
  @tailrec
  def bders (s: List[Char], r: ARexp) : ARexp = s match {
    case Nil => r
    case c::s => bders(s, bder(c, r))
  }

  def flats(rs: List[ARexp]): List[ARexp] = rs match {
      case Nil => Nil
      case AZERO :: rs1 => flats(rs1)
      case AALTS(bs, rs1) :: rs2 => rs1.map(fuse(bs, _)) ::: flats(rs2)
      case r1 :: rs2 => r1 :: flats(rs2)
    }
  //val flats_time = scala.collection.mutable.ArrayBuffer.empty[Long]
  //val dist_time = scala.collection.mutable.ArrayBuffer.empty[Long]
  var flats_time = 0L
  var dist_time = 0L
  /*
  def bsimp(r: ARexp, depth: Int): ARexp = 
  {
    r match {
      case ASEQ(bs1, r1, r2) => (bsimp(r1, depth), bsimp(r2, depth)) match {
          case (AZERO, _) => AZERO
          case (_, AZERO) => AZERO
          case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
          case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
      }
      case AALTS(bs1, rs) => {
        depth match {
          case 0 => {
            flats(distinctBy(rs, erase)) match {
              case Nil => AZERO
              case s :: Nil => fuse(bs1, s)
              case rs => AALTS(bs1, rs) 
            } 
          }
          case n => {
            val rs_simp = rs.map(bsimp(_, n - 1))
            val time2 = System.nanoTime()
            val flat_res = flats(rs_simp)
            val time3 = System.nanoTime()
            val dist_res = distinctBy(flat_res, erase)
            val time4 = System.nanoTime()
            flats_time = flats_time + time3 - time2
            dist_time = dist_time + time4 - time3
            //flats_time += time3 - time2
            //dist_time += time4 - time3
            //distinctBy(flats(rs.map(bsimp)), erase) match {
            dist_res match {
              case Nil => AZERO
              case s :: Nil => fuse(bs1, s)
              case rs => AALTS(bs1, rs)  
            }
          }
        }
      }
      case r => r
    }
  }
  */
  //----------------------------------------------------------------------------This bsimp is the original slow one
  
  def bsimp(r: ARexp): ARexp = r match {
    case ASEQ(bs1, r1, r2) => (bsimp(r1), bsimp(r2)) match {
        case (AZERO, _) => AZERO
        case (_, AZERO) => AZERO
        case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
        case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
    }
    case AALTS(bs1, rs) => {
      val rs_simp = rs.map(bsimp)
      val time2 = System.nanoTime()
      val flat_res = flats(rs_simp)
      val time3 = System.nanoTime()
      val dist_res = distinctBy(flat_res, erase)
      val time4 = System.nanoTime()
      flats_time = flats_time + time3 - time2
      dist_time = dist_time + time4 - time3
      dist_res match {
        case Nil => AZERO
        case s :: Nil => fuse(bs1, s)
        case rs => AALTS(bs1, rs)  
      }
    }
    case r => r
  }
  
  //----------------------------------------------------------------------------experiment bsimp
  /*
  def bders_simp (s: List[Char], r: ARexp) : ARexp = s match {
    case Nil => r
    case c::s => bders_simp(s, bsimp(bder(c, r)))
  }
  */
  /*
  def time[T](code: => T) = {
    val start = System.nanoTime()
    val result = code
    val end = System.nanoTime()
    println((end - start)/1.0e9)
    result
  }
  */
  // main unsimplified lexing function (produces a value)
  def blex(r: ARexp, s: List[Char]) : Bits = s match {
    case Nil => if (bnullable(r)) mkepsBC(r) else throw new Exception("Not matched")
    case c::cs => {
      val der_res = bder(c,r)
      blex(der_res, cs)
    }
  }

  def bpre_lexing(r: Rexp, s: String) = blex(internalise(r), s.toList)
  //def blexing(r: Rexp, s: String) : Val = decode(r, blex(internalise(r), s.toList))

  var bder_time = 0L
  var bsimp_time = 0L
  var mkepsBC_time = 0L
  var small_de = 2
  var big_de = 5
  var usual_de = 3
  
  def blex_simp(r: ARexp, s: List[Char]) : Bits = s match {
    case Nil => {
      if (bnullable(r)) {
        //println(asize(r))
        val time4 = System.nanoTime()
        val bits = mkepsBC(r)
        val time5 = System.nanoTime()
        mkepsBC_time = time5 - time4
        bits
      }
    else throw new Exception("Not matched")
    }
    case c::cs => {
      val time1 = System.nanoTime()
      val der_res = bder(c,r)
      val time2 = System.nanoTime()
      val simp_res = bsimp(der_res)
      val time3 = System.nanoTime()  
      bder_time = bder_time + time2 - time1
      bsimp_time = bsimp_time + time3 - time2
      blex_simp(simp_res, cs)      
    }
  }

  //-------------------------------------------------------------------------------------tests whether simp(simp(r)) == simp(r) holds true
  /*
  def blex_simp(r: ARexp, s: List[Char]) : Bits = s match {
    case Nil => {
      if (bnullable(r)) {
        //println(asize(r))
        mkepsBC(r)
      }
    else throw new Exception("Not matched")
    }
    case c::cs => {
      val der_res = bder(c,r)
      val simp_res = bsimp(der_res)  
      //val simp_res2 = bsimp(simp_res)  
      //println("Size reduction from "+asize(der_res)+ " to " +asize(simp_res)+" to " + asize(simp_res2)) 
      blex_simp(simp_res, cs)
    }
  }
  */
  /*
  def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
    case Nil => {
      if (nullable(r)) {
        mkeps(r) 
      }
      else throw new Exception("Not matched")
    }
    case c::cs => {
      val start = System.nanoTime()
      val (r_simp, f_simp) = simp(der(c, r))
      val end = System.nanoTime()
      println((end - start)/1.0e9)
      inj(r, c, f_simp(lex_simp(r_simp, cs)))
    }
  }
  */

  //size: of a Aregx for testing purposes 
  def size(r: Rexp) : Int = r match {
    case ZERO => 1
    case ONE => 1
    case PRED(_) => 1
    case SEQ(r1, r2) => 1 + size(r1) + size(r2)
    case ALTS(rs) => 1 + rs.map(size).sum
    case STAR(r) => 1 + size(r)
  }

  def asize(a: ARexp) = size(erase(a))


  // decoding does not work yet
  def blexing_simp(r: Rexp, s: String) = {
    //flats_time.clear()
    //dist_time.clear()
    flats_time = 0L
    dist_time = 0L
    bder_time = 0L
    bsimp_time = 0L
    mkepsBC_time = 0L
    val start = System.nanoTime()
    val bit_code = blex_simp(internalise(r), s.toList)
    val end = System.nanoTime()
    println("total time: "+ (end - start)/1.0e9)
    println("spent on flats: " + (flats_time/(1.0e9)))
    println("spent on distinctBy: " + (dist_time/(1.0e9)))
    println("spent on bder: "+ bder_time/1.0e9)
    println("spent on bsimp: " + bsimp_time/1.0e9)
    println("spent on mkepsBC: " + mkepsBC_time/1.0e9)
    //println(s"The length of the string ${s.length}; length of bit sequence:")
    //println((bit_code.length))
    //println(final_derivative)
    //bit_code
    //decode(r, bit_code) 
  }





  // Lexing Rules for a Small While Language

  //symbols
  val SYM = PRED("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".contains(_))
  
  //digits
  val DIGIT = PRED("0123456789".contains(_))
  //identifiers
  val ID = SYM ~ (SYM | DIGIT).% 
  //numbers
  val NUM = STAR(DIGIT)
  //keywords
  val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" | "true" | "false"
  val AKEYWORD: Rexp = ALTS(List("skip" , "while" , "do" , "if" , "then" , "else" , "read" , "write" , "true" , "false"))
  //semicolons
  val SEMI: Rexp = ";"
  //operators
  val OP: Rexp = ":=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/"
  val AOP: Rexp = ALTS(List(":=" , "==" , "-" , "+" , "*" , "!=" , "<" , ">" , "<=" , ">=" , "%" , "/"))
  //whitespaces
  val WHITESPACE = PLUS(" " | "\n" | "\t")
  //parentheses
  val RPAREN: Rexp = ")"
  val LPAREN: Rexp = "("
  val BEGIN: Rexp = "{"
  val END: Rexp = "}"
  //strings...but probably needs not
  val STRING: Rexp = "\"" ~ SYM.% ~ "\""



  val WHILE_REGS = (("k" $ KEYWORD) | 
                    ("i" $ ID) | 
                    ("o" $ OP) | 
                    ("n" $ NUM) | 
                    ("s" $ SEMI) | 
                    ("str" $ STRING) |
                    ("p" $ (LPAREN | RPAREN)) | 
                    ("b" $ (BEGIN | END)) | 
                    ("w" $ WHITESPACE)).%

  val AWHILE_REGS = (
    ALTS(
      List(
        ("k" $ AKEYWORD), 
                    ("i" $ ID),
                    ("o" $ AOP) , 
                    ("n" $ NUM) ,
                    ("s" $ SEMI) ,
                    ("str" $ STRING), 
                    ("p" $ (LPAREN | RPAREN)), 
                    ("b" $ (BEGIN | END)), 
                    ("w" $ WHITESPACE)
      )
    )
  ).%




  //--------------------------------------------------------------------------------------------------------START OF NON-BITCODE PART (TESTING)
  /*
  // Two Simple While programs
  //========================
  println("prog0 test")

  val prog0 = """read n"""
  println(env(lexing_simp(WHILE_REGS, prog0)))
  println(tokenise(WHILE_REGS, prog0))

  println("prog1 test")

  val prog1 = """read  n; write (n)"""
  println(tokenise(WHILE_REGS, prog1))

  */
  // Bigger Tests
  //==============

  def escape(raw: String): String = {
    import scala.reflect.runtime.universe._
    Literal(Constant(raw)).toString
  }

  val prog2 = """
  write "Fib";
  read n;
  minus1 := 0;
  minus2 := 1;
  while n > 0 do {
    temp := minus2;
    minus2 := minus1 + minus2;
    minus1 := temp;
    n := n - 1
  };
  write "Result";
  write minus2
  """

  val prog3 = """
  start := 1000;
  x := start;
  y := start;
  z := start;
  while 0 < x do {
  while 0 < y do {
    while 0 < z do {
      z := z - 1
    };
    z := start;
    y := y - 1
  };     
  y := start;
  x := x - 1
  }
  """
  /*
  for(i <- 400 to 400 by 1){
    println(i+":")
    blexing_simp(WHILE_REGS, prog2 * i)
  } */

    /*
    for (i <- 2 to 5){
      for(j <- 1 to 3){
        println(i,j)
        small_de = i
        usual_de = i + j
        big_de = i + 2*j 
        blexing_simp(AWHILE_REGS, prog2 * 100)
      }
    }*/

  /*
  println("Tokens of prog2")
  println(tokenise(WHILE_REGS, prog2).mkString("\n"))

  val fib_tokens = tokenise(WHILE_REGS, prog2)
  fib_tokens.map{case (s1, s2) => (escape(s1), escape(s2))}.mkString(",\n")


  val test_tokens = tokenise(WHILE_REGS, prog3)
  test_tokens.map{case (s1, s2) => (escape(s1), escape(s2))}.mkString(",\n")
  */

  /*
  println("time test for blexing_simp")
  for (i <- 1 to 1 by 1) {
    lexing_simp(WHILE_REGS, prog2 * i)
    blexing_simp(WHILE_REGS, prog2 * i)
    for( j <- 0 to each_simp_timeb.length - 1){
      if( each_simp_timeb(j)/each_simp_time(j) >= 10.0 )
        println(j, each_simp_timeb(j), each_simp_time(j))
    }
  }
  */

  // Tiger Language
  //================

  //symbols
  val TSYM = PRED("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".contains(_))
  //digits
  val TDIGIT = PRED("0123456789".contains(_))
  //identifiers
  val TID = TSYM ~ (TSYM | TDIGIT | "_").% 
  //numbers
  val TNUM = PLUS(TDIGIT)
  //keywords
  val TKEYWORD : Rexp = { "array" | "break" | "do" | "else" | "end" | "for" | 
                          "function" | "if" | "in" | "let" | "nil" | "of" | "then" | 
                          "to" | "type" | "var" | "while" }

  //operators
  val TOP: Rexp = { "(" | ")" | "[" | "]" | "{" | "}" | ":" | ":=" | "." | "," | 
        ";" | "/" | "+" | "-" | "=" | "<>" | ">" | "<" | ">=" | "<=" | "&" | "|" }

  //whitespaces
  val TSPECIAL : Rexp = PRED((""".:=()\;-""" ++ "\"").contains(_))
  val TWS : Rexp = " " | "\n" | "\t"
  //comments...but probably needs not
  val TCOMMENT: Rexp = """/*""" ~ (TSYM | TWS | TSPECIAL | TDIGIT).% ~ """*/"""

  val TWHITESPACE : Rexp = PLUS(TWS) | TCOMMENT



  //strings...but probably needs not

  val TSTRING: Rexp = "\"" ~ (TSYM | " " | TSPECIAL | TDIGIT).% ~ "\""


  // for indicating lexing errors
  val ERROR = PRED((_) => true)


  val TIGER_REGS = (("k" $ TKEYWORD) | 
                    ("i" $ TID) | 
                    ("o" $ TOP) | 
                    ("n" $ TNUM) | 
                    ("str" $ TSTRING) |
                    ("w" $ TWHITESPACE) | 
                    ("err" $ ERROR)).%


  //println(tokenise_file(TIGER_REGS, "test.tig").mkString("\n"))
  //println(tokenise_file(TIGER_REGS, "queens.tig").mkString("\n"))

  //tokenise(TCOMMENT,"""/**/""")
  //tokenise(TCOMMENT,"""/*a a a */""")
  //tokenise(TIGER_REGS,"""/*a a a */""")
  //tokenise(TCOMMENT,"""/* A program to solve the 8-queens problem */""")
  //tokenise(TIGER_REGS,"""/* A program to solve the 8-queens problem */""")
  //tokenise(TCOMMENT,"""/*  for i:= 0 to c do print("."); print("\n"); flush();*/""")
  //tokenise(TIGER_REGS,"""/*  for i:= 0 to c do print("."); print("\n"); flush();*/""")


  //--------------------------------------------------------------------------------------------------------END OF NON-BITCODE PART (TESTING)



  def clear() = {
    print("")
    //print("\33[H\33[2J")
  }

  //testing the two lexings produce the same value
  //enumerates strings of length n over alphabet cs
  def strs(n: Int, cs: String) : Set[String] = {
    if (n == 0) Set("")
    else {
      val ss = strs(n - 1, cs)
      ss ++
      (for (s <- ss; c <- cs.toList) yield c + s)
    }
  }
  def enum(n: Int, s: String) : Stream[Rexp] = n match {
    case 0 => ZERO #:: ONE #:: s.toStream.map(CHAR)
    case n => {  
      val rs = enum(n - 1, s)
      rs #:::
      (for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) #:::
      (for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) #:::
      (for (r1 <- rs) yield STAR(r1))
    }
  }

  //tests blexing and lexing
  def tests_blexer_simp(ss: Set[String])(r: Rexp) = {
    clear()
    //println(s"Testing ${r}")
    for (s <- ss.par) yield {
      val res1 = Try(Some(lexing_simp(r, s))).getOrElse(None)
      val res2 = Try(Some(blexing_simp(r, s))).getOrElse(None)
      if (res1 != res2) println(s"Disagree on ${r} and ${s}")
      if (res1 != res2) println(s"   ${res1} !=  ${res2}")
      if (res1 != res2) Some((r, s)) else None
    }
  }



  //enum(3, "abc").map(tests_blexer_simp(strs(3, "abc"))).toSet
  /*
  def single_expression_explorer(ar: ARexp, ss: Set[String]): Unit = {
    for (s <- ss){
      
      val der_res = bder(c, ar) 
      val simp_res = bsimp(der_res)
      println(asize(der_res))
      println(asize(simp_res))
      single_expression_explorer(simp_res, (sc - c))
    }
  }*/

  //single_expression_explorer(internalise(("c"~("a"+"b"))%) , Set('a','b','c'))


}

import Rexp.Bits
abstract class ARexp 
case object AZERO extends ARexp
case class AONE(bs: Bits) extends ARexp
case class APRED(bs: Bits, f: Char => Boolean) extends ARexp
case class AALTS(bs: Bits, rs: List[ARexp]) extends ARexp 
case class ASEQ(bs: Bits, r1: ARexp, r2: ARexp) extends ARexp 
case class ASTAR(bs: Bits, r: ARexp) extends ARexp 



abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
case class Rec(x: String, v: Val) extends Val
//case class Pos(i: Int, v: Val) extends Val
case object Prd extends Val