package RexpRelated
import scala.language.implicitConversions
import scala.language.reflectiveCalls
import scala.annotation.tailrec
import scala.util.Try
abstract class Bit
case object Z extends Bit
case object S extends Bit
case class C(c: Char) extends Bit
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class PRED(f: Char => Boolean) extends Rexp
case class ALTS(rs: List[Rexp]) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
case class RECD(x: String, r: Rexp) extends Rexp
object Rexp{
type Bits = List[Bit]
// abbreviations
def CHAR(c: Char) = PRED(_ == c)
def ALT(r1: Rexp, r2: Rexp) = ALTS(List(r1, r2))
def PLUS(r: Rexp) = SEQ(r, STAR(r))
def AALT(bs: Bits, r1: ARexp, r2: ARexp) = AALTS(bs, List(r1, r2))
def distinctBy[B, C](xs: List[B], f: B => C, acc: List[C] = Nil): List[B] = xs match {
case Nil => Nil
case (x::xs) => {
val res = f(x)
if (acc.contains(res)) distinctBy(xs, f, acc)
else x::distinctBy(xs, f, res::acc)
}
}
// some convenience for typing in regular expressions
def charlist2rexp(s : List[Char]): Rexp = s match {
case Nil => ONE
case c::Nil => CHAR(c)
case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
implicit def RexpOps(r: Rexp) = new {
def | (s: Rexp) = ALT(r, s)
def % = STAR(r)
def ~ (s: Rexp) = SEQ(r, s)
}
implicit def stringOps(s: String) = new {
def | (r: Rexp) = ALT(s, r)
def | (r: String) = ALT(s, r)
def % = STAR(s)
def ~ (r: Rexp) = SEQ(s, r)
def ~ (r: String) = SEQ(s, r)
def $ (r: Rexp) = RECD(s, r)
}
// translation into ARexps
def fuse(bs: Bits, r: ARexp) : ARexp = r match {
case AZERO => AZERO
case AONE(cs) => AONE(bs ++ cs)
case APRED(cs, f) => APRED(bs ++ cs, f)
case AALTS(cs, rs) => AALTS(bs ++ cs, rs)
case ASEQ(cs, r1, r2) => ASEQ(bs ++ cs, r1, r2)
case ASTAR(cs, r) => ASTAR(bs ++ cs, r)
}
def internalise(r: Rexp) : ARexp = r match {
case ZERO => AZERO
case ONE => AONE(Nil)
case PRED(f) => APRED(Nil, f)
case ALTS(List(r1, r2)) =>
AALTS(Nil, List(fuse(List(Z), internalise(r1)), fuse(List(S), internalise(r2))))
case ALTS(r1::rs) => {
val AALTS(Nil, rs2) = internalise(ALTS(rs))
AALTS(Nil, fuse(List(Z), internalise(r1)) :: rs2.map(fuse(List(S), _)))
}
case SEQ(r1, r2) => ASEQ(Nil, internalise(r1), internalise(r2))
case STAR(r) => ASTAR(Nil, internalise(r))
case RECD(x, r) => internalise(r)
}
internalise(("a" | "ab") ~ ("b" | ""))
def decode_aux(r: Rexp, bs: Bits) : (Val, Bits) = (r, bs) match {
case (ONE, bs) => (Empty, bs)
case (PRED(f), C(c)::bs) => (Chr(c), bs)
case (ALTS(r::Nil), bs) => decode_aux(r, bs)
case (ALTS(rs), bs) => bs match {
case Z::bs1 => {
val (v, bs2) = decode_aux(rs.head, bs1)
(Left(v), bs2)
}
case S::bs1 => {
val (v, bs2) = decode_aux(ALTS(rs.tail), bs1)
(Right(v), bs2)
}
}
case (SEQ(r1, r2), bs) => {
val (v1, bs1) = decode_aux(r1, bs)
val (v2, bs2) = decode_aux(r2, bs1)
(Sequ(v1, v2), bs2)
}
case (STAR(r1), S::bs) => {
val (v, bs1) = decode_aux(r1, bs)
//println(v)
val (Stars(vs), bs2) = decode_aux(STAR(r1), bs1)
(Stars(v::vs), bs2)
}
case (STAR(_), Z::bs) => (Stars(Nil), bs)
case (RECD(x, r1), bs) => {
val (v, bs1) = decode_aux(r1, bs)
(Rec(x, v), bs1)
}
}
def decode(r: Rexp, bs: Bits) = decode_aux(r, bs) match {
case (v, Nil) => v
case _ => throw new Exception("Not decodable")
}
//erase function: extracts the regx from Aregex
def erase(r:ARexp): Rexp = r match{
case AZERO => ZERO
case AONE(_) => ONE
case APRED(bs, f) => PRED(f)
case AALTS(bs, rs) => ALTS(rs.map(erase(_)))
case ASEQ(bs, r1, r2) => SEQ (erase(r1), erase(r2))
case ASTAR(cs, r)=> STAR(erase(r))
}
//--------------------------------------------------------------------------------------------------------START OF NON-BITCODE PART
// nullable function: tests whether the regular
// expression can recognise the empty string
def nullable (r: Rexp) : Boolean = r match {
case ZERO => false
case ONE => true
case PRED(_) => false
case ALTS(rs) => rs.exists(nullable)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
case RECD(_, r) => nullable(r)
//case PLUS(r) => nullable(r)
}
// derivative of a regular expression w.r.t. a character
def der (c: Char, r: Rexp) : Rexp = r match {
case ZERO => ZERO
case ONE => ZERO
case PRED(f) => if (f(c)) ONE else ZERO
case ALTS(List(r1, r2)) => ALTS(List(der(c, r1), der(c, r2)))
case SEQ(r1, r2) =>
if (nullable(r1)) ALTS(List(SEQ(der(c, r1), r2), der(c, r2)))
else SEQ(der(c, r1), r2)
case STAR(r) => SEQ(der(c, r), STAR(r))
case RECD(_, r1) => der(c, r1)
//case PLUS(r) => SEQ(der(c, r), STAR(r))
}
def flatten(v: Val) : String = v match {
case Empty => ""
case Chr(c) => c.toString
case Left(v) => flatten(v)
case Right(v) => flatten(v)
case Sequ(v1, v2) => flatten(v1) + flatten(v2)
case Stars(vs) => vs.map(flatten).mkString
case Rec(_, v) => flatten(v)
}
// extracts an environment from a value
def env(v: Val) : List[(String, String)] = v match {
case Empty => Nil
case Chr(c) => Nil
case Left(v) => env(v)
case Right(v) => env(v)
case Sequ(v1, v2) => env(v1) ::: env(v2)
case Stars(vs) => vs.flatMap(env)
case Rec(x, v) => (x, flatten(v))::env(v)
}
// injection part
def mkeps(r: Rexp) : Val = r match {
case ONE => Empty
case ALTS(List(r1, r2)) =>
if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
case STAR(r) => Stars(Nil)
case RECD(x, r) => Rec(x, mkeps(r))
//case PLUS(r) => Stars(List(mkeps(r)))
}
def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
case (ALTS(List(r1, r2)), Left(v1)) => Left(inj(r1, c, v1))
case (ALTS(List(r1, r2)), Right(v2)) => Right(inj(r2, c, v2))
case (PRED(_), Empty) => Chr(c)
case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))
//case (PLUS(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
}
def lex(r: Rexp, s: List[Char]) : Val = s match {
case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
case c::cs => inj(r, c, lex(der(c, r), cs))
}
def lexing(r: Rexp, s: String) : Val = lex(r, s.toList)
// some "rectification" functions for simplification
def F_ID(v: Val): Val = v
def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
case Right(v) => Right(f2(v))
case Left(v) => Left(f1(v))
}
def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))
}
def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) =
(v:Val) => Sequ(f1(Empty), f2(v))
def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) =
(v:Val) => Sequ(f1(v), f2(Empty))
def F_RECD(f: Val => Val) = (v:Val) => v match {
case Rec(x, v) => Rec(x, f(v))
}
def F_ERROR(v: Val): Val = throw new Exception("error")
// simplification of regular expressions returning also an
// rectification function; no simplification under STAR
def simp(r: Rexp): (Rexp, Val => Val) = r match {
case ALTS(List(r1, r2)) => {
val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {
case (ZERO, _) => (r2s, F_RIGHT(f2s))
case (_, ZERO) => (r1s, F_LEFT(f1s))
case _ => if (r1s == r2s) (r1s, F_LEFT(f1s))
else (ALTS(List(r1s, r2s)), F_ALT(f1s, f2s))
}
}
case SEQ(r1, r2) => {
val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {
case (ZERO, _) => (ZERO, F_ERROR)
case (_, ZERO) => (ZERO, F_ERROR)
case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s))
case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s))
case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))
}
}
case RECD(x, r1) => {
val (r1s, f1s) = simp(r1)
(RECD(x, r1s), F_RECD(f1s))
}
case r => (r, F_ID)
}
/*
val each_simp_time = scala.collection.mutable.ArrayBuffer.empty[Long]
val each_simp_timeb = scala.collection.mutable.ArrayBuffer.empty[Long]
*/
def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
case Nil => {
if (nullable(r)) {
mkeps(r)
}
else throw new Exception("Not matched")
}
case c::cs => {
val (r_simp, f_simp) = simp(der(c, r))
inj(r, c, f_simp(lex_simp(r_simp, cs)))
}
}
def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList)
//println(lexing_simp(("a" | "ab") ~ ("b" | ""), "ab"))
// filters out all white spaces
def tokenise(r: Rexp, s: String) =
env(lexing_simp(r, s)).filterNot { _._1 == "w"}
//reads the string from a file
def fromFile(name: String) : String =
io.Source.fromFile(name).mkString
def tokenise_file(r: Rexp, name: String) =
tokenise(r, fromFile(name))
// Testing
//============
def time[T](code: => T) = {
val start = System.nanoTime()
val result = code
val end = System.nanoTime()
println((end - start)/1.0e9)
result
}
//--------------------------------------------------------------------------------------------------------END OF NON-BITCODE PART
// bnullable function: tests whether the aregular
// expression can recognise the empty string
def bnullable (r: ARexp) : Boolean = r match {
case AZERO => false
case AONE(_) => true
case APRED(_,_) => false
case AALTS(_, rs) => rs.exists(bnullable)
case ASEQ(_, r1, r2) => bnullable(r1) && bnullable(r2)
case ASTAR(_, _) => true
}
def mkepsBC(r: ARexp) : Bits = r match {
case AONE(bs) => bs
case AALTS(bs, rs) => {
val n = rs.indexWhere(bnullable)
bs ++ mkepsBC(rs(n))
}
case ASEQ(bs, r1, r2) => bs ++ mkepsBC(r1) ++ mkepsBC(r2)
case ASTAR(bs, r) => bs ++ List(Z)
}
// derivative of a regular expression w.r.t. a character
def bder(c: Char, r: ARexp) : ARexp = r match {
case AZERO => AZERO
case AONE(_) => AZERO
case APRED(bs, f) => if (f(c)) AONE(bs:::List(C(c))) else AZERO
case AALTS(bs, rs) => AALTS(bs, rs.map(bder(c, _)))
case ASEQ(bs, r1, r2) =>
if (bnullable(r1)) AALT(bs, ASEQ(Nil, bder(c, r1), r2), fuse(mkepsBC(r1), bder(c, r2)))
else ASEQ(bs, bder(c, r1), r2)
case ASTAR(bs, r) => ASEQ(bs, fuse(List(S), bder(c, r)), ASTAR(Nil, r))
}
def ders (s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, der(c, r))
}
// derivative w.r.t. a string (iterates bder)
@tailrec
def bders (s: List[Char], r: ARexp) : ARexp = s match {
case Nil => r
case c::s => bders(s, bder(c, r))
}
def flats(rs: List[ARexp]): List[ARexp] = rs match {
case Nil => Nil
case AZERO :: rs1 => flats(rs1)
case AALTS(bs, rs1) :: rs2 => rs1.map(fuse(bs, _)) ::: flats(rs2)
case r1 :: rs2 => r1 :: flats(rs2)
}
//val flats_time = scala.collection.mutable.ArrayBuffer.empty[Long]
//val dist_time = scala.collection.mutable.ArrayBuffer.empty[Long]
var flats_time = 0L
var dist_time = 0L
/*
def bsimp(r: ARexp, depth: Int): ARexp =
{
r match {
case ASEQ(bs1, r1, r2) => (bsimp(r1, depth), bsimp(r2, depth)) match {
case (AZERO, _) => AZERO
case (_, AZERO) => AZERO
case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
}
case AALTS(bs1, rs) => {
depth match {
case 0 => {
flats(distinctBy(rs, erase)) match {
case Nil => AZERO
case s :: Nil => fuse(bs1, s)
case rs => AALTS(bs1, rs)
}
}
case n => {
val rs_simp = rs.map(bsimp(_, n - 1))
val time2 = System.nanoTime()
val flat_res = flats(rs_simp)
val time3 = System.nanoTime()
val dist_res = distinctBy(flat_res, erase)
val time4 = System.nanoTime()
flats_time = flats_time + time3 - time2
dist_time = dist_time + time4 - time3
//flats_time += time3 - time2
//dist_time += time4 - time3
//distinctBy(flats(rs.map(bsimp)), erase) match {
dist_res match {
case Nil => AZERO
case s :: Nil => fuse(bs1, s)
case rs => AALTS(bs1, rs)
}
}
}
}
case r => r
}
}
*/
//----------------------------------------------------------------------------This bsimp is the original slow one
def bsimp(r: ARexp): ARexp = r match {
case ASEQ(bs1, r1, r2) => (bsimp(r1), bsimp(r2)) match {
case (AZERO, _) => AZERO
case (_, AZERO) => AZERO
case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
}
case AALTS(bs1, rs) => {
val rs_simp = rs.map(bsimp)
val time2 = System.nanoTime()
val flat_res = flats(rs_simp)
val time3 = System.nanoTime()
val dist_res = distinctBy(flat_res, erase)
val time4 = System.nanoTime()
flats_time = flats_time + time3 - time2
dist_time = dist_time + time4 - time3
dist_res match {
case Nil => AZERO
case s :: Nil => fuse(bs1, s)
case rs => AALTS(bs1, rs)
}
}
case r => r
}
//----------------------------------------------------------------------------experiment bsimp
/*
def bders_simp (s: List[Char], r: ARexp) : ARexp = s match {
case Nil => r
case c::s => bders_simp(s, bsimp(bder(c, r)))
}
*/
/*
def time[T](code: => T) = {
val start = System.nanoTime()
val result = code
val end = System.nanoTime()
println((end - start)/1.0e9)
result
}
*/
// main unsimplified lexing function (produces a value)
def blex(r: ARexp, s: List[Char]) : Bits = s match {
case Nil => if (bnullable(r)) mkepsBC(r) else throw new Exception("Not matched")
case c::cs => {
val der_res = bder(c,r)
blex(der_res, cs)
}
}
def bpre_lexing(r: Rexp, s: String) = blex(internalise(r), s.toList)
//def blexing(r: Rexp, s: String) : Val = decode(r, blex(internalise(r), s.toList))
var bder_time = 0L
var bsimp_time = 0L
var mkepsBC_time = 0L
var small_de = 2
var big_de = 5
var usual_de = 3
def blex_simp(r: ARexp, s: List[Char]) : Bits = s match {
case Nil => {
if (bnullable(r)) {
//println(asize(r))
val time4 = System.nanoTime()
val bits = mkepsBC(r)
val time5 = System.nanoTime()
mkepsBC_time = time5 - time4
bits
}
else throw new Exception("Not matched")
}
case c::cs => {
val time1 = System.nanoTime()
val der_res = bder(c,r)
val time2 = System.nanoTime()
val simp_res = bsimp(der_res)
val time3 = System.nanoTime()
bder_time = bder_time + time2 - time1
bsimp_time = bsimp_time + time3 - time2
blex_simp(simp_res, cs)
}
}
//-------------------------------------------------------------------------------------tests whether simp(simp(r)) == simp(r) holds true
/*
def blex_simp(r: ARexp, s: List[Char]) : Bits = s match {
case Nil => {
if (bnullable(r)) {
//println(asize(r))
mkepsBC(r)
}
else throw new Exception("Not matched")
}
case c::cs => {
val der_res = bder(c,r)
val simp_res = bsimp(der_res)
//val simp_res2 = bsimp(simp_res)
//println("Size reduction from "+asize(der_res)+ " to " +asize(simp_res)+" to " + asize(simp_res2))
blex_simp(simp_res, cs)
}
}
*/
/*
def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
case Nil => {
if (nullable(r)) {
mkeps(r)
}
else throw new Exception("Not matched")
}
case c::cs => {
val start = System.nanoTime()
val (r_simp, f_simp) = simp(der(c, r))
val end = System.nanoTime()
println((end - start)/1.0e9)
inj(r, c, f_simp(lex_simp(r_simp, cs)))
}
}
*/
//size: of a Aregx for testing purposes
def size(r: Rexp) : Int = r match {
case ZERO => 1
case ONE => 1
case PRED(_) => 1
case SEQ(r1, r2) => 1 + size(r1) + size(r2)
case ALTS(rs) => 1 + rs.map(size).sum
case STAR(r) => 1 + size(r)
}
def asize(a: ARexp) = size(erase(a))
// decoding does not work yet
def blexing_simp(r: Rexp, s: String) = {
//flats_time.clear()
//dist_time.clear()
flats_time = 0L
dist_time = 0L
bder_time = 0L
bsimp_time = 0L
mkepsBC_time = 0L
val start = System.nanoTime()
val bit_code = blex_simp(internalise(r), s.toList)
val end = System.nanoTime()
println("total time: "+ (end - start)/1.0e9)
println("spent on flats: " + (flats_time/(1.0e9)))
println("spent on distinctBy: " + (dist_time/(1.0e9)))
println("spent on bder: "+ bder_time/1.0e9)
println("spent on bsimp: " + bsimp_time/1.0e9)
println("spent on mkepsBC: " + mkepsBC_time/1.0e9)
//println(s"The length of the string ${s.length}; length of bit sequence:")
//println((bit_code.length))
//println(final_derivative)
//bit_code
//decode(r, bit_code)
}
// Lexing Rules for a Small While Language
//symbols
val SYM = PRED("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".contains(_))
//digits
val DIGIT = PRED("0123456789".contains(_))
//identifiers
val ID = SYM ~ (SYM | DIGIT).%
//numbers
val NUM = STAR(DIGIT)
//keywords
val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" | "true" | "false"
val AKEYWORD: Rexp = ALTS(List("skip" , "while" , "do" , "if" , "then" , "else" , "read" , "write" , "true" , "false"))
//semicolons
val SEMI: Rexp = ";"
//operators
val OP: Rexp = ":=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/"
val AOP: Rexp = ALTS(List(":=" , "==" , "-" , "+" , "*" , "!=" , "<" , ">" , "<=" , ">=" , "%" , "/"))
//whitespaces
val WHITESPACE = PLUS(" " | "\n" | "\t")
//parentheses
val RPAREN: Rexp = ")"
val LPAREN: Rexp = "("
val BEGIN: Rexp = "{"
val END: Rexp = "}"
//strings...but probably needs not
val STRING: Rexp = "\"" ~ SYM.% ~ "\""
val WHILE_REGS = (("k" $ KEYWORD) |
("i" $ ID) |
("o" $ OP) |
("n" $ NUM) |
("s" $ SEMI) |
("str" $ STRING) |
("p" $ (LPAREN | RPAREN)) |
("b" $ (BEGIN | END)) |
("w" $ WHITESPACE)).%
val AWHILE_REGS = (
ALTS(
List(
("k" $ AKEYWORD),
("i" $ ID),
("o" $ AOP) ,
("n" $ NUM) ,
("s" $ SEMI) ,
("str" $ STRING),
("p" $ (LPAREN | RPAREN)),
("b" $ (BEGIN | END)),
("w" $ WHITESPACE)
)
)
).%
//--------------------------------------------------------------------------------------------------------START OF NON-BITCODE PART (TESTING)
/*
// Two Simple While programs
//========================
println("prog0 test")
val prog0 = """read n"""
println(env(lexing_simp(WHILE_REGS, prog0)))
println(tokenise(WHILE_REGS, prog0))
println("prog1 test")
val prog1 = """read n; write (n)"""
println(tokenise(WHILE_REGS, prog1))
*/
// Bigger Tests
//==============
def escape(raw: String): String = {
import scala.reflect.runtime.universe._
Literal(Constant(raw)).toString
}
val prog2 = """
write "Fib";
read n;
minus1 := 0;
minus2 := 1;
while n > 0 do {
temp := minus2;
minus2 := minus1 + minus2;
minus1 := temp;
n := n - 1
};
write "Result";
write minus2
"""
val prog3 = """
start := 1000;
x := start;
y := start;
z := start;
while 0 < x do {
while 0 < y do {
while 0 < z do {
z := z - 1
};
z := start;
y := y - 1
};
y := start;
x := x - 1
}
"""
/*
for(i <- 400 to 400 by 1){
println(i+":")
blexing_simp(WHILE_REGS, prog2 * i)
} */
/*
for (i <- 2 to 5){
for(j <- 1 to 3){
println(i,j)
small_de = i
usual_de = i + j
big_de = i + 2*j
blexing_simp(AWHILE_REGS, prog2 * 100)
}
}*/
/*
println("Tokens of prog2")
println(tokenise(WHILE_REGS, prog2).mkString("\n"))
val fib_tokens = tokenise(WHILE_REGS, prog2)
fib_tokens.map{case (s1, s2) => (escape(s1), escape(s2))}.mkString(",\n")
val test_tokens = tokenise(WHILE_REGS, prog3)
test_tokens.map{case (s1, s2) => (escape(s1), escape(s2))}.mkString(",\n")
*/
/*
println("time test for blexing_simp")
for (i <- 1 to 1 by 1) {
lexing_simp(WHILE_REGS, prog2 * i)
blexing_simp(WHILE_REGS, prog2 * i)
for( j <- 0 to each_simp_timeb.length - 1){
if( each_simp_timeb(j)/each_simp_time(j) >= 10.0 )
println(j, each_simp_timeb(j), each_simp_time(j))
}
}
*/
// Tiger Language
//================
//symbols
val TSYM = PRED("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".contains(_))
//digits
val TDIGIT = PRED("0123456789".contains(_))
//identifiers
val TID = TSYM ~ (TSYM | TDIGIT | "_").%
//numbers
val TNUM = PLUS(TDIGIT)
//keywords
val TKEYWORD : Rexp = { "array" | "break" | "do" | "else" | "end" | "for" |
"function" | "if" | "in" | "let" | "nil" | "of" | "then" |
"to" | "type" | "var" | "while" }
//operators
val TOP: Rexp = { "(" | ")" | "[" | "]" | "{" | "}" | ":" | ":=" | "." | "," |
";" | "/" | "+" | "-" | "=" | "<>" | ">" | "<" | ">=" | "<=" | "&" | "|" }
//whitespaces
val TSPECIAL : Rexp = PRED((""".:=()\;-""" ++ "\"").contains(_))
val TWS : Rexp = " " | "\n" | "\t"
//comments...but probably needs not
val TCOMMENT: Rexp = """/*""" ~ (TSYM | TWS | TSPECIAL | TDIGIT).% ~ """*/"""
val TWHITESPACE : Rexp = PLUS(TWS) | TCOMMENT
//strings...but probably needs not
val TSTRING: Rexp = "\"" ~ (TSYM | " " | TSPECIAL | TDIGIT).% ~ "\""
// for indicating lexing errors
val ERROR = PRED((_) => true)
val TIGER_REGS = (("k" $ TKEYWORD) |
("i" $ TID) |
("o" $ TOP) |
("n" $ TNUM) |
("str" $ TSTRING) |
("w" $ TWHITESPACE) |
("err" $ ERROR)).%
//println(tokenise_file(TIGER_REGS, "test.tig").mkString("\n"))
//println(tokenise_file(TIGER_REGS, "queens.tig").mkString("\n"))
//tokenise(TCOMMENT,"""/**/""")
//tokenise(TCOMMENT,"""/*a a a */""")
//tokenise(TIGER_REGS,"""/*a a a */""")
//tokenise(TCOMMENT,"""/* A program to solve the 8-queens problem */""")
//tokenise(TIGER_REGS,"""/* A program to solve the 8-queens problem */""")
//tokenise(TCOMMENT,"""/* for i:= 0 to c do print("."); print("\n"); flush();*/""")
//tokenise(TIGER_REGS,"""/* for i:= 0 to c do print("."); print("\n"); flush();*/""")
//--------------------------------------------------------------------------------------------------------END OF NON-BITCODE PART (TESTING)
def clear() = {
print("")
//print("\33[H\33[2J")
}
//testing the two lexings produce the same value
//enumerates strings of length n over alphabet cs
def strs(n: Int, cs: String) : Set[String] = {
if (n == 0) Set("")
else {
val ss = strs(n - 1, cs)
ss ++
(for (s <- ss; c <- cs.toList) yield c + s)
}
}
def enum(n: Int, s: String) : Stream[Rexp] = n match {
case 0 => ZERO #:: ONE #:: s.toStream.map(CHAR)
case n => {
val rs = enum(n - 1, s)
rs #:::
(for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) #:::
(for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) #:::
(for (r1 <- rs) yield STAR(r1))
}
}
//tests blexing and lexing
def tests_blexer_simp(ss: Set[String])(r: Rexp) = {
clear()
//println(s"Testing ${r}")
for (s <- ss.par) yield {
val res1 = Try(Some(lexing_simp(r, s))).getOrElse(None)
val res2 = Try(Some(blexing_simp(r, s))).getOrElse(None)
if (res1 != res2) println(s"Disagree on ${r} and ${s}")
if (res1 != res2) println(s" ${res1} != ${res2}")
if (res1 != res2) Some((r, s)) else None
}
}
//enum(3, "abc").map(tests_blexer_simp(strs(3, "abc"))).toSet
/*
def single_expression_explorer(ar: ARexp, ss: Set[String]): Unit = {
for (s <- ss){
val der_res = bder(c, ar)
val simp_res = bsimp(der_res)
println(asize(der_res))
println(asize(simp_res))
single_expression_explorer(simp_res, (sc - c))
}
}*/
//single_expression_explorer(internalise(("c"~("a"+"b"))%) , Set('a','b','c'))
}
import Rexp.Bits
abstract class ARexp
case object AZERO extends ARexp
case class AONE(bs: Bits) extends ARexp
case class APRED(bs: Bits, f: Char => Boolean) extends ARexp
case class AALTS(bs: Bits, rs: List[ARexp]) extends ARexp
case class ASEQ(bs: Bits, r1: ARexp, r2: ARexp) extends ARexp
case class ASTAR(bs: Bits, r: ARexp) extends ARexp
abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
case class Rec(x: String, v: Val) extends Val
//case class Pos(i: Int, v: Val) extends Val
case object Prd extends Val