--- a/ChengsongTanPhdThesis/Chapters/Inj.tex Fri Aug 12 00:39:23 2022 +0100
+++ b/ChengsongTanPhdThesis/Chapters/Inj.tex Sun Aug 14 09:44:27 2022 +0100
@@ -102,9 +102,37 @@
However, for the purposes here, the $\textit{Ders}$ definition with
a single string is sufficient.
+The reason for defining derivatives
+is that it provides a different approach
+to test membership of a string in
+a set of strings.
+For example, to test whether the string
+$bar$ is contained in the set $\{foo, bar, brak\}$, one takes derivative of the set with
+respect to the string $bar$:
+\begin{center}
+\begin{tabular}{lclll}
+ $S = \{foo, bar, brak\}$ & $ \stackrel{\backslash b}{\rightarrow }$ &
+ $\{ar, rak\}$ &
+ $\stackrel{\backslash a}{\rightarrow}$ &
+ \\
+ $\{r \}$ & $\stackrel{\backslash r}{\rightarrow}$ & $\{[]\}$ &
+ $\stackrel{[] \in S \backslash bar}{\longrightarrow}$ & $bar \in S$\\
+\end{tabular}
+\end{center}
+\noindent
+and in the end test whether the set
+has the empty string \footnote{ we use the infix notation $A\backslash c$
+ instead of $\Der \; c \; A$ for brevity, as it is clear we are operating
+on languages rather than regular expressions }.
+In general, if we have a language $S_{start}$,
+then we can test whether $s$ is in $S_{start}$
+by testing whether $[] \in S \backslash s$.
+
With the sequencing, Kleene star, and $\textit{Der}$ operator on languages,
we have a few properties of how the language derivative can be defined using
sub-languages.
+For example, for the sequence operator, we have
+something similar to the ``chain rule'' of the calculus derivative:
\begin{lemma}
\[
\Der \; c \; (A @ B) =
@@ -198,13 +226,95 @@
%all strings in that set, Brzozowski defined a derivative operation on regular expressions
%so that after derivative $L(r\backslash c)$
%will look as if it was obtained by doing a language derivative on $L(r)$:
-Recall that the semantic derivative acts on a set of
-strings. Brzozowski noticed that this operation
+Recall that the semantic derivative acts on a
+language (set of strings).
+One can decide whether a string $s$ belongs
+to a language $S$ by taking derivative with respect to
+that string and then checking whether the empty
+string is in the derivative:
+\begin{center}
+\parskip \baselineskip
+\def\myupbracefill#1{\rotatebox{90}{\stretchto{\{}{#1}}}
+\def\rlwd{.5pt}
+\newcommand\notate[3]{%
+ \unskip\def\useanchorwidth{T}%
+ \setbox0=\hbox{#1}%
+ \def\stackalignment{c}\stackunder[-6pt]{%
+ \def\stackalignment{c}\stackunder[-1.5pt]{%
+ \stackunder[-2pt]{\strut #1}{\myupbracefill{\wd0}}}{%
+ \rule{\rlwd}{#2\baselineskip}}}{%
+ \strut\kern7pt$\hookrightarrow$\rlap{ \footnotesize#3}}\ignorespaces%
+}
+\Longstack{
+\notate{$\{ \ldots ,\;$
+ \notate{s}{1}{$(c_1 :: s_1)$}
+ $, \; \ldots \}$
+}{1}{$S_{start}$}
+}
+\Longstack{
+ $\stackrel{\backslash c_1}{\longrightarrow}$
+}
+\Longstack{
+ $\{ \ldots,\;$ \notate{$s_1$}{1}{$(c_2::s_2)$}
+ $,\; \ldots \}$
+}
+\Longstack{
+ $\stackrel{\backslash c_2}{\longrightarrow}$
+}
+\Longstack{
+ $\{ \ldots,\; s_2
+ ,\; \ldots \}$
+}
+\Longstack{
+ $ \xdashrightarrow{\backslash c_3\ldots\ldots} $
+}
+\Longstack{
+ \notate{$\{\ldots, [], \ldots\}$}{1}{$S_{end} =
+ S_{start}\backslash s$}
+}
+\end{center}
+\begin{center}
+ $s \in S_{start} \iff [] \in S_{end}$
+\end{center}
+\noindent
+Brzozowski noticed that this operation
can be ``mirrored" on regular expressions which
he calls the derivative of a regular expression $r$
with respect to a character $c$, written
-$r \backslash c$.
-He defined this operation such that the following property holds:
+$r \backslash c$. This infix operator
+takes an original regular expression $r$ as input
+and a character as a right operand and
+outputs a result, which is a new regular expression.
+The derivative operation on regular expression
+is defined such that the language of the derivative result
+coincides with the language of the original
+regular expression's language being taken the language
+derivative with respect to the same character:
+\begin{center}
+\parskip \baselineskip
+\def\myupbracefill#1{\rotatebox{90}{\stretchto{\{}{#1}}}
+\def\rlwd{.5pt}
+\newcommand\notate[3]{%
+ \unskip\def\useanchorwidth{T}%
+ \setbox0=\hbox{#1}%
+ \def\stackalignment{c}\stackunder[-6pt]{%
+ \def\stackalignment{c}\stackunder[-1.5pt]{%
+ \stackunder[-2pt]{\strut #1}{\myupbracefill{\wd0}}}{%
+ \rule{\rlwd}{#2\baselineskip}}}{%
+ \strut\kern8pt$\hookrightarrow$\rlap{ \footnotesize#3}}\ignorespaces%
+}
+\Longstack{
+ \notate{$r$}{1}{$L \; r = \{\ldots, \;c::s_1,
+\;\ldots\}$}
+}
+\Longstack{
+ $\stackrel{\backslash c}{\longrightarrow}$
+}
+\Longstack{
+ \notate{$r\backslash c$}{2}{$L \; (r\backslash c)=
+ \{\ldots,\;s_1,\;\ldots\}$}
+}
+\end{center}
\begin{center}
\[
@@ -212,6 +322,10 @@
\]
\end{center}
\noindent
+where we do derivatives on the regular expression
+$r$ and test membership of $s$ by checking
+whether the empty string is in the language of
+$r\backslash s$.
For example in the sequence case we have
\begin{center}
\begin{tabular}{lcl}