--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/SpecExt.thy Sun Oct 10 18:35:21 2021 +0100
@@ -0,0 +1,1688 @@
+
+theory SpecExt
+ imports Main (*"~~/src/HOL/Library/Sublist"*)
+begin
+
+section {* Sequential Composition of Languages *}
+
+definition
+ Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
+where
+ "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
+
+text {* Two Simple Properties about Sequential Composition *}
+
+lemma Sequ_empty_string [simp]:
+ shows "A ;; {[]} = A"
+ and "{[]} ;; A = A"
+by (simp_all add: Sequ_def)
+
+lemma Sequ_empty [simp]:
+ shows "A ;; {} = {}"
+ and "{} ;; A = {}"
+by (simp_all add: Sequ_def)
+
+lemma Sequ_assoc:
+ shows "(A ;; B) ;; C = A ;; (B ;; C)"
+apply(auto simp add: Sequ_def)
+apply blast
+by (metis append_assoc)
+
+lemma Sequ_Union_in:
+ shows "(A ;; (\<Union>x\<in> B. C x)) = (\<Union>x\<in> B. A ;; C x)"
+by (auto simp add: Sequ_def)
+
+section {* Semantic Derivative (Left Quotient) of Languages *}
+
+definition
+ Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
+where
+ "Der c A \<equiv> {s. c # s \<in> A}"
+
+definition
+ Ders :: "string \<Rightarrow> string set \<Rightarrow> string set"
+where
+ "Ders s A \<equiv> {s'. s @ s' \<in> A}"
+
+lemma Der_null [simp]:
+ shows "Der c {} = {}"
+unfolding Der_def
+by auto
+
+lemma Der_empty [simp]:
+ shows "Der c {[]} = {}"
+unfolding Der_def
+by auto
+
+lemma Der_char [simp]:
+ shows "Der c {[d]} = (if c = d then {[]} else {})"
+unfolding Der_def
+by auto
+
+lemma Der_union [simp]:
+ shows "Der c (A \<union> B) = Der c A \<union> Der c B"
+unfolding Der_def
+by auto
+
+lemma Der_UNION [simp]:
+ shows "Der c (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. Der c (B x))"
+by (auto simp add: Der_def)
+
+lemma Der_Sequ [simp]:
+ shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
+unfolding Der_def Sequ_def
+ by (auto simp add: Cons_eq_append_conv)
+
+
+section {* Kleene Star for Languages *}
+
+inductive_set
+ Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
+ for A :: "string set"
+where
+ start[intro]: "[] \<in> A\<star>"
+| step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
+
+(* Arden's lemma *)
+
+lemma Star_cases:
+ shows "A\<star> = {[]} \<union> A ;; A\<star>"
+unfolding Sequ_def
+by (auto) (metis Star.simps)
+
+lemma Star_decomp:
+ assumes "c # x \<in> A\<star>"
+ shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A\<star>"
+using assms
+by (induct x\<equiv>"c # x" rule: Star.induct)
+ (auto simp add: append_eq_Cons_conv)
+
+lemma Star_Der_Sequ:
+ shows "Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>"
+unfolding Der_def Sequ_def
+by(auto simp add: Star_decomp)
+
+
+lemma Der_star [simp]:
+ shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
+proof -
+ have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"
+ by (simp only: Star_cases[symmetric])
+ also have "... = Der c (A ;; A\<star>)"
+ by (simp only: Der_union Der_empty) (simp)
+ also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
+ by simp
+ also have "... = (Der c A) ;; A\<star>"
+ using Star_Der_Sequ by auto
+ finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
+qed
+
+section {* Power operation for Sets *}
+
+fun
+ Pow :: "string set \<Rightarrow> nat \<Rightarrow> string set" ("_ \<up> _" [101, 102] 101)
+where
+ "A \<up> 0 = {[]}"
+| "A \<up> (Suc n) = A ;; (A \<up> n)"
+
+lemma Pow_empty [simp]:
+ shows "[] \<in> A \<up> n \<longleftrightarrow> (n = 0 \<or> [] \<in> A)"
+by(induct n) (auto simp add: Sequ_def)
+
+lemma Pow_Suc_rev:
+ "A \<up> (Suc n) = (A \<up> n) ;; A"
+apply(induct n arbitrary: A)
+apply(simp_all)
+by (metis Sequ_assoc)
+
+
+lemma Pow_decomp:
+ assumes "c # x \<in> A \<up> n"
+ shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A \<up> (n - 1)"
+using assms
+apply(induct n)
+apply(auto simp add: Cons_eq_append_conv Sequ_def)
+apply(case_tac n)
+apply(auto simp add: Sequ_def)
+apply(blast)
+done
+
+lemma Star_Pow:
+ assumes "s \<in> A\<star>"
+ shows "\<exists>n. s \<in> A \<up> n"
+using assms
+apply(induct)
+apply(auto)
+apply(rule_tac x="Suc n" in exI)
+apply(auto simp add: Sequ_def)
+done
+
+lemma Pow_Star:
+ assumes "s \<in> A \<up> n"
+ shows "s \<in> A\<star>"
+using assms
+apply(induct n arbitrary: s)
+apply(auto simp add: Sequ_def)
+ done
+
+lemma
+ assumes "[] \<in> A" "n \<noteq> 0" "A \<noteq> {}"
+ shows "A \<up> (Suc n) = A \<up> n"
+
+lemma Der_Pow_0:
+ shows "Der c (A \<up> 0) = {}"
+by(simp add: Der_def)
+
+lemma Der_Pow_Suc:
+ shows "Der c (A \<up> (Suc n)) = (Der c A) ;; (A \<up> n)"
+unfolding Der_def Sequ_def
+apply(auto simp add: Cons_eq_append_conv Sequ_def dest!: Pow_decomp)
+apply(case_tac n)
+apply(force simp add: Sequ_def)+
+done
+
+lemma Der_Pow [simp]:
+ shows "Der c (A \<up> n) = (if n = 0 then {} else (Der c A) ;; (A \<up> (n - 1)))"
+apply(case_tac n)
+apply(simp_all del: Pow.simps add: Der_Pow_0 Der_Pow_Suc)
+done
+
+lemma Der_Pow_Sequ [simp]:
+ shows "Der c (A ;; A \<up> n) = (Der c A) ;; (A \<up> n)"
+by (simp only: Pow.simps[symmetric] Der_Pow) (simp)
+
+
+lemma Pow_Sequ_Un:
+ assumes "0 < x"
+ shows "(\<Union>n \<in> {..x}. (A \<up> n)) = ({[]} \<union> (\<Union>n \<in> {..x - Suc 0}. A ;; (A \<up> n)))"
+using assms
+apply(auto simp add: Sequ_def)
+apply(smt Pow.elims Sequ_def Suc_le_mono Suc_pred atMost_iff empty_iff insert_iff mem_Collect_eq)
+apply(rule_tac x="Suc xa" in bexI)
+apply(auto simp add: Sequ_def)
+done
+
+lemma Pow_Sequ_Un2:
+ assumes "0 < x"
+ shows "(\<Union>n \<in> {x..}. (A \<up> n)) = (\<Union>n \<in> {x - Suc 0..}. A ;; (A \<up> n))"
+using assms
+apply(auto simp add: Sequ_def)
+apply(case_tac n)
+apply(auto simp add: Sequ_def)
+apply fastforce
+apply(case_tac x)
+apply(auto)
+apply(rule_tac x="Suc xa" in bexI)
+apply(auto simp add: Sequ_def)
+done
+
+section {* Regular Expressions *}
+
+datatype rexp =
+ ZERO
+| ONE
+| CHAR char
+| SEQ rexp rexp
+| ALT rexp rexp
+| STAR rexp
+| UPNTIMES rexp nat
+| NTIMES rexp nat
+| FROMNTIMES rexp nat
+| NMTIMES rexp nat nat
+| NOT rexp
+
+section {* Semantics of Regular Expressions *}
+
+fun
+ L :: "rexp \<Rightarrow> string set"
+where
+ "L (ZERO) = {}"
+| "L (ONE) = {[]}"
+| "L (CHAR c) = {[c]}"
+| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
+| "L (ALT r1 r2) = (L r1) \<union> (L r2)"
+| "L (STAR r) = (L r)\<star>"
+| "L (UPNTIMES r n) = (\<Union>i\<in>{..n} . (L r) \<up> i)"
+| "L (NTIMES r n) = (L r) \<up> n"
+| "L (FROMNTIMES r n) = (\<Union>i\<in>{n..} . (L r) \<up> i)"
+| "L (NMTIMES r n m) = (\<Union>i\<in>{n..m} . (L r) \<up> i)"
+| "L (NOT r) = ((UNIV:: string set) - L r)"
+
+section {* Nullable, Derivatives *}
+
+fun
+ nullable :: "rexp \<Rightarrow> bool"
+where
+ "nullable (ZERO) = False"
+| "nullable (ONE) = True"
+| "nullable (CHAR c) = False"
+| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
+| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
+| "nullable (STAR r) = True"
+| "nullable (UPNTIMES r n) = True"
+| "nullable (NTIMES r n) = (if n = 0 then True else nullable r)"
+| "nullable (FROMNTIMES r n) = (if n = 0 then True else nullable r)"
+| "nullable (NMTIMES r n m) = (if m < n then False else (if n = 0 then True else nullable r))"
+| "nullable (NOT r) = (\<not> nullable r)"
+
+fun
+ der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
+where
+ "der c (ZERO) = ZERO"
+| "der c (ONE) = ZERO"
+| "der c (CHAR d) = (if c = d then ONE else ZERO)"
+| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
+| "der c (SEQ r1 r2) =
+ (if nullable r1
+ then ALT (SEQ (der c r1) r2) (der c r2)
+ else SEQ (der c r1) r2)"
+| "der c (STAR r) = SEQ (der c r) (STAR r)"
+| "der c (UPNTIMES r n) = (if n = 0 then ZERO else SEQ (der c r) (UPNTIMES r (n - 1)))"
+| "der c (NTIMES r n) = (if n = 0 then ZERO else SEQ (der c r) (NTIMES r (n - 1)))"
+| "der c (FROMNTIMES r n) =
+ (if n = 0
+ then SEQ (der c r) (STAR r)
+ else SEQ (der c r) (FROMNTIMES r (n - 1)))"
+| "der c (NMTIMES r n m) =
+ (if m < n then ZERO
+ else (if n = 0 then (if m = 0 then ZERO else
+ SEQ (der c r) (UPNTIMES r (m - 1))) else
+ SEQ (der c r) (NMTIMES r (n - 1) (m - 1))))"
+| "der c (NOT r) = NOT (der c r)"
+
+lemma
+ "L(der c (UPNTIMES r m)) =
+ L(if (m = 0) then ZERO else ALT ONE (SEQ(der c r) (UPNTIMES r (m - 1))))"
+ apply(case_tac m)
+ apply(simp)
+ apply(simp del: der.simps)
+ apply(simp only: der.simps)
+ apply(simp add: Sequ_def)
+ apply(auto)
+ defer
+ apply blast
+ oops
+
+
+
+lemma
+ assumes "der c r = ONE \<or> der c r = ZERO"
+ shows "L (der c (NOT r)) \<noteq> L(if (der c r = ZERO) then ONE else
+ if (der c r = ONE) then ZERO
+ else NOT(der c r))"
+ using assms
+ apply(simp)
+ apply(auto)
+ done
+
+lemma
+ "L (der c (NOT r)) = L(if (der c r = ZERO) then ONE else
+ if (der c r = ONE) then ZERO
+ else NOT(der c r))"
+ apply(simp)
+ apply(auto)
+ oops
+
+lemma pow_add:
+ assumes "s1 \<in> A \<up> n" "s2 \<in> A \<up> m"
+ shows "s1 @ s2 \<in> A \<up> (n + m)"
+ using assms
+ apply(induct n arbitrary: m s1 s2)
+ apply(auto simp add: Sequ_def)
+ by blast
+
+lemma pow_add2:
+ assumes "x \<in> A \<up> (m + n)"
+ shows "x \<in> A \<up> m ;; A \<up> n"
+ using assms
+ apply(induct m arbitrary: n x)
+ apply(auto simp add: Sequ_def)
+ by (metis append.assoc)
+
+
+
+lemma
+ "L(FROMNTIMES r n) = L(SEQ (NTIMES r n) (STAR r))"
+ apply(auto simp add: Sequ_def)
+ defer
+ apply(subgoal_tac "\<exists>m. s2 \<in> (L r) \<up> m")
+ prefer 2
+ apply (simp add: Star_Pow)
+ apply(auto)
+ apply(rule_tac x="n + m" in bexI)
+ apply (simp add: pow_add)
+ apply simp
+ apply(subgoal_tac "\<exists>m. m + n = xa")
+ apply(auto)
+ prefer 2
+ using le_add_diff_inverse2 apply auto[1]
+ by (smt Pow_Star Sequ_def add.commute mem_Collect_eq pow_add2)
+
+lemma
+ "L (der c (FROMNTIMES r n)) =
+ L (SEQ (der c r) (FROMNTIMES r (n - 1)))"
+ apply(auto simp add: Sequ_def)
+ using Star_Pow apply blast
+ using Pow_Star by blast
+
+lemma
+ "L (der c (UPNTIMES r n)) =
+ L(if n = 0 then ZERO else
+ ALT (der c r) (SEQ (der c r) (UPNTIMES r (n - 1))))"
+ apply(auto simp add: Sequ_def)
+ using SpecExt.Pow_empty by blast
+
+abbreviation "FROM \<equiv> FROMNTIMES"
+
+lemma
+ shows "L (der c (FROM r n)) =
+ L (if n <= 0 then SEQ (der c r) (ALT ONE (FROM r 0))
+ else SEQ (der c r) (ALT ZERO (FROM r (n -1))))"
+ apply(auto simp add: Sequ_def)
+ oops
+
+
+fun
+ ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
+where
+ "ders [] r = r"
+| "ders (c # s) r = ders s (der c r)"
+
+
+lemma nullable_correctness:
+ shows "nullable r \<longleftrightarrow> [] \<in> (L r)"
+by(induct r) (auto simp add: Sequ_def)
+
+
+lemma der_correctness:
+ shows "L (der c r) = Der c (L r)"
+apply(induct r)
+apply(simp add: nullable_correctness del: Der_UNION)
+apply(simp add: nullable_correctness del: Der_UNION)
+apply(simp add: nullable_correctness del: Der_UNION)
+apply(simp add: nullable_correctness del: Der_UNION)
+apply(simp add: nullable_correctness del: Der_UNION)
+apply(simp add: nullable_correctness del: Der_UNION)
+ prefer 2
+ apply(simp only: der.simps)
+ apply(case_tac "x2 = 0")
+ apply(simp)
+ apply(simp del: Der_Sequ L.simps)
+ apply(subst L.simps)
+ apply(subst (2) L.simps)
+ thm Der_UNION
+
+apply(simp add: nullable_correctness del: Der_UNION)
+apply(simp add: nullable_correctness del: Der_UNION)
+apply(rule impI)
+apply(subst Sequ_Union_in)
+apply(subst Der_Pow_Sequ[symmetric])
+apply(subst Pow.simps[symmetric])
+apply(subst Der_UNION[symmetric])
+apply(subst Pow_Sequ_Un)
+apply(simp)
+apply(simp only: Der_union Der_empty)
+ apply(simp)
+(* FROMNTIMES *)
+ apply(simp add: nullable_correctness del: Der_UNION)
+ apply(rule conjI)
+prefer 2
+apply(subst Sequ_Union_in)
+apply(subst Der_Pow_Sequ[symmetric])
+apply(subst Pow.simps[symmetric])
+apply(case_tac x2)
+prefer 2
+apply(subst Pow_Sequ_Un2)
+apply(simp)
+apply(simp)
+ apply(auto simp add: Sequ_def Der_def)[1]
+ apply(auto simp add: Sequ_def split: if_splits)[1]
+ using Star_Pow apply fastforce
+ using Pow_Star apply blast
+(* NMTIMES *)
+apply(simp add: nullable_correctness del: Der_UNION)
+apply(rule impI)
+apply(rule conjI)
+apply(rule impI)
+apply(subst Sequ_Union_in)
+apply(subst Der_Pow_Sequ[symmetric])
+apply(subst Pow.simps[symmetric])
+apply(subst Der_UNION[symmetric])
+apply(case_tac x3a)
+apply(simp)
+apply(clarify)
+apply(auto simp add: Sequ_def Der_def Cons_eq_append_conv)[1]
+apply(rule_tac x="Suc xa" in bexI)
+apply(auto simp add: Sequ_def)[2]
+apply (metis append_Cons)
+apply (metis (no_types, hide_lams) Pow_decomp atMost_iff diff_Suc_eq_diff_pred diff_is_0_eq)
+apply(rule impI)+
+apply(subst Sequ_Union_in)
+apply(subst Der_Pow_Sequ[symmetric])
+apply(subst Pow.simps[symmetric])
+apply(subst Der_UNION[symmetric])
+apply(case_tac x2)
+apply(simp)
+apply(simp del: Pow.simps)
+apply(auto simp add: Sequ_def Der_def)
+apply (metis One_nat_def Suc_le_D Suc_le_mono atLeastAtMost_iff diff_Suc_1 not_le)
+by fastforce
+
+
+
+lemma ders_correctness:
+ shows "L (ders s r) = Ders s (L r)"
+by (induct s arbitrary: r)
+ (simp_all add: Ders_def der_correctness Der_def)
+
+
+section {* Values *}
+
+datatype val =
+ Void
+| Char char
+| Seq val val
+| Right val
+| Left val
+| Stars "val list"
+
+
+section {* The string behind a value *}
+
+fun
+ flat :: "val \<Rightarrow> string"
+where
+ "flat (Void) = []"
+| "flat (Char c) = [c]"
+| "flat (Left v) = flat v"
+| "flat (Right v) = flat v"
+| "flat (Seq v1 v2) = (flat v1) @ (flat v2)"
+| "flat (Stars []) = []"
+| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))"
+
+abbreviation
+ "flats vs \<equiv> concat (map flat vs)"
+
+lemma flat_Stars [simp]:
+ "flat (Stars vs) = flats vs"
+by (induct vs) (auto)
+
+lemma Star_concat:
+ assumes "\<forall>s \<in> set ss. s \<in> A"
+ shows "concat ss \<in> A\<star>"
+using assms by (induct ss) (auto)
+
+lemma Star_cstring:
+ assumes "s \<in> A\<star>"
+ shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])"
+using assms
+apply(induct rule: Star.induct)
+apply(auto)[1]
+apply(rule_tac x="[]" in exI)
+apply(simp)
+apply(erule exE)
+apply(clarify)
+apply(case_tac "s1 = []")
+apply(rule_tac x="ss" in exI)
+apply(simp)
+apply(rule_tac x="s1#ss" in exI)
+apply(simp)
+done
+
+lemma Aux:
+ assumes "\<forall>s\<in>set ss. s = []"
+ shows "concat ss = []"
+using assms
+by (induct ss) (auto)
+
+lemma Pow_cstring_nonempty:
+ assumes "s \<in> A \<up> n"
+ shows "\<exists>ss. concat ss = s \<and> length ss \<le> n \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])"
+using assms
+apply(induct n arbitrary: s)
+apply(auto)
+apply(simp add: Sequ_def)
+apply(erule exE)+
+apply(clarify)
+apply(drule_tac x="s2" in meta_spec)
+apply(simp)
+apply(clarify)
+apply(case_tac "s1 = []")
+apply(simp)
+apply(rule_tac x="ss" in exI)
+apply(simp)
+apply(rule_tac x="s1 # ss" in exI)
+apply(simp)
+done
+
+lemma Pow_cstring:
+ assumes "s \<in> A \<up> n"
+ shows "\<exists>ss1 ss2. concat (ss1 @ ss2) = s \<and> length (ss1 @ ss2) = n \<and>
+ (\<forall>s \<in> set ss1. s \<in> A \<and> s \<noteq> []) \<and> (\<forall>s \<in> set ss2. s \<in> A \<and> s = [])"
+using assms
+apply(induct n arbitrary: s)
+apply(auto)[1]
+apply(simp only: Pow_Suc_rev)
+apply(simp add: Sequ_def)
+apply(erule exE)+
+apply(clarify)
+apply(drule_tac x="s1" in meta_spec)
+apply(simp)
+apply(erule exE)+
+apply(clarify)
+apply(case_tac "s2 = []")
+apply(simp)
+apply(rule_tac x="ss1" in exI)
+apply(rule_tac x="s2#ss2" in exI)
+apply(simp)
+apply(rule_tac x="ss1 @ [s2]" in exI)
+apply(rule_tac x="ss2" in exI)
+apply(simp)
+apply(subst Aux)
+apply(auto)[1]
+apply(subst Aux)
+apply(auto)[1]
+apply(simp)
+done
+
+
+section {* Lexical Values *}
+
+
+
+inductive
+ Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<Turnstile> _ : _" [100, 100] 100)
+where
+ "\<lbrakk>\<Turnstile> v1 : r1; \<Turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<Turnstile> Seq v1 v2 : SEQ r1 r2"
+| "\<Turnstile> v1 : r1 \<Longrightarrow> \<Turnstile> Left v1 : ALT r1 r2"
+| "\<Turnstile> v2 : r2 \<Longrightarrow> \<Turnstile> Right v2 : ALT r1 r2"
+| "\<Turnstile> Void : ONE"
+| "\<Turnstile> Char c : CHAR c"
+| "\<lbrakk>\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> []\<rbrakk> \<Longrightarrow> \<Turnstile> Stars vs : STAR r"
+| "\<lbrakk>\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> []; length vs \<le> n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars vs : UPNTIMES r n"
+| "\<lbrakk>\<forall>v \<in> set vs1. \<Turnstile> v : r \<and> flat v \<noteq> [];
+ \<forall>v \<in> set vs2. \<Turnstile> v : r \<and> flat v = [];
+ length (vs1 @ vs2) = n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (vs1 @ vs2) : NTIMES r n"
+| "\<lbrakk>\<forall>v \<in> set vs1. \<Turnstile> v : r \<and> flat v \<noteq> [];
+ \<forall>v \<in> set vs2. \<Turnstile> v : r \<and> flat v = [];
+ length (vs1 @ vs2) = n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (vs1 @ vs2) : FROMNTIMES r n"
+| "\<lbrakk>\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> []; length vs > n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars vs : FROMNTIMES r n"
+| "\<lbrakk>\<forall>v \<in> set vs1. \<Turnstile> v : r \<and> flat v \<noteq> [];
+ \<forall>v \<in> set vs2. \<Turnstile> v : r \<and> flat v = [];
+ length (vs1 @ vs2) = n; length (vs1 @ vs2) \<le> m\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (vs1 @ vs2) : NMTIMES r n m"
+| "\<lbrakk>\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> [];
+ length vs > n; length vs \<le> m\<rbrakk> \<Longrightarrow> \<Turnstile> Stars vs : NMTIMES r n m"
+
+
+
+
+
+inductive_cases Prf_elims:
+ "\<Turnstile> v : ZERO"
+ "\<Turnstile> v : SEQ r1 r2"
+ "\<Turnstile> v : ALT r1 r2"
+ "\<Turnstile> v : ONE"
+ "\<Turnstile> v : CHAR c"
+ "\<Turnstile> vs : STAR r"
+ "\<Turnstile> vs : UPNTIMES r n"
+ "\<Turnstile> vs : NTIMES r n"
+ "\<Turnstile> vs : FROMNTIMES r n"
+ "\<Turnstile> vs : NMTIMES r n m"
+
+lemma Prf_Stars_appendE:
+ assumes "\<Turnstile> Stars (vs1 @ vs2) : STAR r"
+ shows "\<Turnstile> Stars vs1 : STAR r \<and> \<Turnstile> Stars vs2 : STAR r"
+using assms
+by (auto intro: Prf.intros elim!: Prf_elims)
+
+
+
+lemma flats_empty:
+ assumes "(\<forall>v\<in>set vs. flat v = [])"
+ shows "flats vs = []"
+using assms
+by(induct vs) (simp_all)
+
+lemma Star_cval:
+ assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
+ shows "\<exists>vs. flats vs = concat ss \<and> (\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> [])"
+using assms
+apply(induct ss)
+apply(auto)
+apply(rule_tac x="[]" in exI)
+apply(simp)
+apply(case_tac "flat v = []")
+apply(rule_tac x="vs" in exI)
+apply(simp)
+apply(rule_tac x="v#vs" in exI)
+apply(simp)
+done
+
+
+lemma flats_cval:
+ assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
+ shows "\<exists>vs1 vs2. flats (vs1 @ vs2) = concat ss \<and> length (vs1 @ vs2) = length ss \<and>
+ (\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []) \<and>
+ (\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = [])"
+using assms
+apply(induct ss rule: rev_induct)
+apply(rule_tac x="[]" in exI)+
+apply(simp)
+apply(simp)
+apply(clarify)
+apply(case_tac "flat v = []")
+apply(rule_tac x="vs1" in exI)
+apply(rule_tac x="v#vs2" in exI)
+apply(simp)
+apply(rule_tac x="vs1 @ [v]" in exI)
+apply(rule_tac x="vs2" in exI)
+apply(simp)
+apply(subst (asm) (2) flats_empty)
+apply(simp)
+apply(simp)
+done
+
+lemma flats_cval_nonempty:
+ assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
+ shows "\<exists>vs. flats vs = concat ss \<and> length vs \<le> length ss \<and>
+ (\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> [])"
+using assms
+apply(induct ss)
+apply(rule_tac x="[]" in exI)
+apply(simp)
+apply(simp)
+apply(clarify)
+apply(case_tac "flat v = []")
+apply(rule_tac x="vs" in exI)
+apply(simp)
+apply(rule_tac x="v # vs" in exI)
+apply(simp)
+done
+
+lemma Pow_flats:
+ assumes "\<forall>v \<in> set vs. flat v \<in> A"
+ shows "flats vs \<in> A \<up> length vs"
+using assms
+by(induct vs)(auto simp add: Sequ_def)
+
+lemma Pow_flats_appends:
+ assumes "\<forall>v \<in> set vs1. flat v \<in> A" "\<forall>v \<in> set vs2. flat v \<in> A"
+ shows "flats vs1 @ flats vs2 \<in> A \<up> (length vs1 + length vs2)"
+using assms
+apply(induct vs1)
+apply(auto simp add: Sequ_def Pow_flats)
+done
+
+lemma L_flat_Prf1:
+ assumes "\<Turnstile> v : r"
+ shows "flat v \<in> L r"
+using assms
+apply(induct)
+apply(auto simp add: Sequ_def Star_concat Pow_flats)
+apply(meson Pow_flats atMost_iff)
+using Pow_flats_appends apply blast
+using Pow_flats_appends apply blast
+apply (meson Pow_flats atLeast_iff less_imp_le)
+apply(rule_tac x="length vs1 + length vs2" in bexI)
+apply(meson Pow_flats_appends atLeastAtMost_iff)
+apply(simp)
+apply(meson Pow_flats atLeastAtMost_iff less_or_eq_imp_le)
+done
+
+lemma L_flat_Prf2:
+ assumes "s \<in> L r"
+ shows "\<exists>v. \<Turnstile> v : r \<and> flat v = s"
+using assms
+proof(induct r arbitrary: s)
+ case (STAR r s)
+ have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
+ have "s \<in> L (STAR r)" by fact
+ then obtain ss where "concat ss = s" "\<forall>s \<in> set ss. s \<in> L r \<and> s \<noteq> []"
+ using Star_cstring by auto
+ then obtain vs where "flats vs = s" "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> []"
+ using IH Star_cval by metis
+ then show "\<exists>v. \<Turnstile> v : STAR r \<and> flat v = s"
+ using Prf.intros(6) flat_Stars by blast
+next
+ case (SEQ r1 r2 s)
+ then show "\<exists>v. \<Turnstile> v : SEQ r1 r2 \<and> flat v = s"
+ unfolding Sequ_def L.simps by (fastforce intro: Prf.intros)
+next
+ case (ALT r1 r2 s)
+ then show "\<exists>v. \<Turnstile> v : ALT r1 r2 \<and> flat v = s"
+ unfolding L.simps by (fastforce intro: Prf.intros)
+next
+ case (NTIMES r n)
+ have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
+ have "s \<in> L (NTIMES r n)" by fact
+ then obtain ss1 ss2 where "concat (ss1 @ ss2) = s" "length (ss1 @ ss2) = n"
+ "\<forall>s \<in> set ss1. s \<in> L r \<and> s \<noteq> []" "\<forall>s \<in> set ss2. s \<in> L r \<and> s = []"
+ using Pow_cstring by force
+ then obtain vs1 vs2 where "flats (vs1 @ vs2) = s" "length (vs1 @ vs2) = n"
+ "\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []" "\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = []"
+ using IH flats_cval
+ apply -
+ apply(drule_tac x="ss1 @ ss2" in meta_spec)
+ apply(drule_tac x="r" in meta_spec)
+ apply(drule meta_mp)
+ apply(simp)
+ apply (metis Un_iff)
+ apply(clarify)
+ apply(drule_tac x="vs1" in meta_spec)
+ apply(drule_tac x="vs2" in meta_spec)
+ apply(simp)
+ done
+ then show "\<exists>v. \<Turnstile> v : NTIMES r n \<and> flat v = s"
+ using Prf.intros(8) flat_Stars by blast
+next
+ case (FROMNTIMES r n)
+ have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
+ have "s \<in> L (FROMNTIMES r n)" by fact
+ then obtain ss1 ss2 k where "concat (ss1 @ ss2) = s" "length (ss1 @ ss2) = k" "n \<le> k"
+ "\<forall>s \<in> set ss1. s \<in> L r \<and> s \<noteq> []" "\<forall>s \<in> set ss2. s \<in> L r \<and> s = []"
+ using Pow_cstring by force
+ then obtain vs1 vs2 where "flats (vs1 @ vs2) = s" "length (vs1 @ vs2) = k" "n \<le> k"
+ "\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []" "\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = []"
+ using IH flats_cval
+ apply -
+ apply(drule_tac x="ss1 @ ss2" in meta_spec)
+ apply(drule_tac x="r" in meta_spec)
+ apply(drule meta_mp)
+ apply(simp)
+ apply (metis Un_iff)
+ apply(clarify)
+ apply(drule_tac x="vs1" in meta_spec)
+ apply(drule_tac x="vs2" in meta_spec)
+ apply(simp)
+ done
+ then show "\<exists>v. \<Turnstile> v : FROMNTIMES r n \<and> flat v = s"
+ apply(case_tac "length vs1 \<le> n")
+ apply(rule_tac x="Stars (vs1 @ take (n - length vs1) vs2)" in exI)
+ apply(simp)
+ apply(subgoal_tac "flats (take (n - length vs1) vs2) = []")
+ prefer 2
+ apply (meson flats_empty in_set_takeD)
+ apply(clarify)
+ apply(rule conjI)
+ apply(rule Prf.intros)
+ apply(simp)
+ apply (meson in_set_takeD)
+ apply(simp)
+ apply(simp)
+ apply (simp add: flats_empty)
+ apply(rule_tac x="Stars vs1" in exI)
+ apply(simp)
+ apply(rule conjI)
+ apply(rule Prf.intros(10))
+ apply(auto)
+ done
+next
+ case (NMTIMES r n m)
+ have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
+ have "s \<in> L (NMTIMES r n m)" by fact
+ then obtain ss1 ss2 k where "concat (ss1 @ ss2) = s" "length (ss1 @ ss2) = k" "n \<le> k" "k \<le> m"
+ "\<forall>s \<in> set ss1. s \<in> L r \<and> s \<noteq> []" "\<forall>s \<in> set ss2. s \<in> L r \<and> s = []"
+ using Pow_cstring by (auto, blast)
+ then obtain vs1 vs2 where "flats (vs1 @ vs2) = s" "length (vs1 @ vs2) = k" "n \<le> k" "k \<le> m"
+ "\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []" "\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = []"
+ using IH flats_cval
+ apply -
+ apply(drule_tac x="ss1 @ ss2" in meta_spec)
+ apply(drule_tac x="r" in meta_spec)
+ apply(drule meta_mp)
+ apply(simp)
+ apply (metis Un_iff)
+ apply(clarify)
+ apply(drule_tac x="vs1" in meta_spec)
+ apply(drule_tac x="vs2" in meta_spec)
+ apply(simp)
+ done
+ then show "\<exists>v. \<Turnstile> v : NMTIMES r n m \<and> flat v = s"
+ apply(case_tac "length vs1 \<le> n")
+ apply(rule_tac x="Stars (vs1 @ take (n - length vs1) vs2)" in exI)
+ apply(simp)
+ apply(subgoal_tac "flats (take (n - length vs1) vs2) = []")
+ prefer 2
+ apply (meson flats_empty in_set_takeD)
+ apply(clarify)
+ apply(rule conjI)
+ apply(rule Prf.intros)
+ apply(simp)
+ apply (meson in_set_takeD)
+ apply(simp)
+ apply(simp)
+ apply (simp add: flats_empty)
+ apply(rule_tac x="Stars vs1" in exI)
+ apply(simp)
+ apply(rule conjI)
+ apply(rule Prf.intros)
+ apply(auto)
+ done
+next
+ case (UPNTIMES r n s)
+ have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
+ have "s \<in> L (UPNTIMES r n)" by fact
+ then obtain ss where "concat ss = s" "\<forall>s \<in> set ss. s \<in> L r \<and> s \<noteq> []" "length ss \<le> n"
+ using Pow_cstring_nonempty by force
+ then obtain vs where "flats vs = s" "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> []" "length vs \<le> n"
+ using IH flats_cval_nonempty by (smt order.trans)
+ then show "\<exists>v. \<Turnstile> v : UPNTIMES r n \<and> flat v = s"
+ using Prf.intros(7) flat_Stars by blast
+qed (auto intro: Prf.intros)
+
+
+lemma L_flat_Prf:
+ shows "L(r) = {flat v | v. \<Turnstile> v : r}"
+using L_flat_Prf1 L_flat_Prf2 by blast
+
+thm Prf.intros
+thm Prf.cases
+
+lemma
+ assumes "\<Turnstile> v : (STAR r)"
+ shows "\<Turnstile> v : (FROMNTIMES r 0)"
+ using assms
+ apply(erule_tac Prf.cases)
+ apply(simp_all)
+ apply(case_tac vs)
+ apply(auto)
+ apply(subst append_Nil[symmetric])
+ apply(rule Prf.intros)
+ apply(auto)
+ apply(simp add: Prf.intros)
+ done
+
+lemma
+ assumes "\<Turnstile> v : (FROMNTIMES r 0)"
+ shows "\<Turnstile> v : (STAR r)"
+ using assms
+ apply(erule_tac Prf.cases)
+ apply(simp_all)
+ apply(rule Prf.intros)
+ apply(simp)
+ apply(rule Prf.intros)
+ apply(simp)
+ done
+
+section {* Sets of Lexical Values *}
+
+text {*
+ Shows that lexical values are finite for a given regex and string.
+*}
+
+definition
+ LV :: "rexp \<Rightarrow> string \<Rightarrow> val set"
+where "LV r s \<equiv> {v. \<Turnstile> v : r \<and> flat v = s}"
+
+lemma LV_simps:
+ shows "LV ZERO s = {}"
+ and "LV ONE s = (if s = [] then {Void} else {})"
+ and "LV (CHAR c) s = (if s = [c] then {Char c} else {})"
+ and "LV (ALT r1 r2) s = Left ` LV r1 s \<union> Right ` LV r2 s"
+unfolding LV_def
+apply(auto intro: Prf.intros elim: Prf.cases)
+done
+
+abbreviation
+ "Prefixes s \<equiv> {s'. prefix s' s}"
+
+abbreviation
+ "Suffixes s \<equiv> {s'. suffix s' s}"
+
+abbreviation
+ "SSuffixes s \<equiv> {s'. strict_suffix s' s}"
+
+lemma Suffixes_cons [simp]:
+ shows "Suffixes (c # s) = Suffixes s \<union> {c # s}"
+by (auto simp add: suffix_def Cons_eq_append_conv)
+
+
+lemma finite_Suffixes:
+ shows "finite (Suffixes s)"
+by (induct s) (simp_all)
+
+lemma finite_SSuffixes:
+ shows "finite (SSuffixes s)"
+proof -
+ have "SSuffixes s \<subseteq> Suffixes s"
+ unfolding suffix_def strict_suffix_def by auto
+ then show "finite (SSuffixes s)"
+ using finite_Suffixes finite_subset by blast
+qed
+
+lemma finite_Prefixes:
+ shows "finite (Prefixes s)"
+proof -
+ have "finite (Suffixes (rev s))"
+ by (rule finite_Suffixes)
+ then have "finite (rev ` Suffixes (rev s))" by simp
+ moreover
+ have "rev ` (Suffixes (rev s)) = Prefixes s"
+ unfolding suffix_def prefix_def image_def
+ by (auto)(metis rev_append rev_rev_ident)+
+ ultimately show "finite (Prefixes s)" by simp
+qed
+
+definition
+ "Stars_Cons V Vs \<equiv> {Stars (v # vs) | v vs. v \<in> V \<and> Stars vs \<in> Vs}"
+
+definition
+ "Stars_Append Vs1 Vs2 \<equiv> {Stars (vs1 @ vs2) | vs1 vs2. Stars vs1 \<in> Vs1 \<and> Stars vs2 \<in> Vs2}"
+
+fun Stars_Pow :: "val set \<Rightarrow> nat \<Rightarrow> val set"
+where
+ "Stars_Pow Vs 0 = {Stars []}"
+| "Stars_Pow Vs (Suc n) = Stars_Cons Vs (Stars_Pow Vs n)"
+
+lemma finite_Stars_Cons:
+ assumes "finite V" "finite Vs"
+ shows "finite (Stars_Cons V Vs)"
+ using assms
+proof -
+ from assms(2) have "finite (Stars -` Vs)"
+ by(simp add: finite_vimageI inj_on_def)
+ with assms(1) have "finite (V \<times> (Stars -` Vs))"
+ by(simp)
+ then have "finite ((\<lambda>(v, vs). Stars (v # vs)) ` (V \<times> (Stars -` Vs)))"
+ by simp
+ moreover have "Stars_Cons V Vs = (\<lambda>(v, vs). Stars (v # vs)) ` (V \<times> (Stars -` Vs))"
+ unfolding Stars_Cons_def by auto
+ ultimately show "finite (Stars_Cons V Vs)"
+ by simp
+qed
+
+lemma finite_Stars_Append:
+ assumes "finite Vs1" "finite Vs2"
+ shows "finite (Stars_Append Vs1 Vs2)"
+ using assms
+proof -
+ define UVs1 where "UVs1 \<equiv> Stars -` Vs1"
+ define UVs2 where "UVs2 \<equiv> Stars -` Vs2"
+ from assms have "finite UVs1" "finite UVs2"
+ unfolding UVs1_def UVs2_def
+ by(simp_all add: finite_vimageI inj_on_def)
+ then have "finite ((\<lambda>(vs1, vs2). Stars (vs1 @ vs2)) ` (UVs1 \<times> UVs2))"
+ by simp
+ moreover
+ have "Stars_Append Vs1 Vs2 = (\<lambda>(vs1, vs2). Stars (vs1 @ vs2)) ` (UVs1 \<times> UVs2)"
+ unfolding Stars_Append_def UVs1_def UVs2_def by auto
+ ultimately show "finite (Stars_Append Vs1 Vs2)"
+ by simp
+qed
+
+lemma finite_Stars_Pow:
+ assumes "finite Vs"
+ shows "finite (Stars_Pow Vs n)"
+by (induct n) (simp_all add: finite_Stars_Cons assms)
+
+lemma LV_STAR_finite:
+ assumes "\<forall>s. finite (LV r s)"
+ shows "finite (LV (STAR r) s)"
+proof(induct s rule: length_induct)
+ fix s::"char list"
+ assume "\<forall>s'. length s' < length s \<longrightarrow> finite (LV (STAR r) s')"
+ then have IH: "\<forall>s' \<in> SSuffixes s. finite (LV (STAR r) s')"
+ apply(auto simp add: strict_suffix_def suffix_def)
+ by force
+ define f where "f \<equiv> \<lambda>(v, vs). Stars (v # vs)"
+ define S1 where "S1 \<equiv> \<Union>s' \<in> Prefixes s. LV r s'"
+ define S2 where "S2 \<equiv> \<Union>s2 \<in> SSuffixes s. LV (STAR r) s2"
+ have "finite S1" using assms
+ unfolding S1_def by (simp_all add: finite_Prefixes)
+ moreover
+ with IH have "finite S2" unfolding S2_def
+ by (auto simp add: finite_SSuffixes)
+ ultimately
+ have "finite ({Stars []} \<union> Stars_Cons S1 S2)"
+ by (simp add: finite_Stars_Cons)
+ moreover
+ have "LV (STAR r) s \<subseteq> {Stars []} \<union> (Stars_Cons S1 S2)"
+ unfolding S1_def S2_def f_def LV_def Stars_Cons_def
+ unfolding prefix_def strict_suffix_def
+ unfolding image_def
+ apply(auto)
+ apply(case_tac x)
+ apply(auto elim: Prf_elims)
+ apply(erule Prf_elims)
+ apply(auto)
+ apply(case_tac vs)
+ apply(auto intro: Prf.intros)
+ apply(rule exI)
+ apply(rule conjI)
+ apply(rule_tac x="flats list" in exI)
+ apply(rule conjI)
+ apply(simp add: suffix_def)
+ apply(blast)
+ using Prf.intros(6) flat_Stars by blast
+ ultimately
+ show "finite (LV (STAR r) s)" by (simp add: finite_subset)
+qed
+
+lemma LV_UPNTIMES_STAR:
+ "LV (UPNTIMES r n) s \<subseteq> LV (STAR r) s"
+by(auto simp add: LV_def intro: Prf.intros elim: Prf_elims)
+
+lemma LV_NTIMES_3:
+ shows "LV (NTIMES r (Suc n)) [] = (\<lambda>(v,vs). Stars (v#vs)) ` (LV r [] \<times> (Stars -` (LV (NTIMES r n) [])))"
+unfolding LV_def
+apply(auto elim!: Prf_elims simp add: image_def)
+apply(case_tac vs1)
+apply(auto)
+apply(case_tac vs2)
+apply(auto)
+apply(subst append.simps(1)[symmetric])
+apply(rule Prf.intros)
+apply(auto)
+apply(subst append.simps(1)[symmetric])
+apply(rule Prf.intros)
+apply(auto)
+ done
+
+lemma LV_FROMNTIMES_3:
+ shows "LV (FROMNTIMES r (Suc n)) [] =
+ (\<lambda>(v,vs). Stars (v#vs)) ` (LV r [] \<times> (Stars -` (LV (FROMNTIMES r n) [])))"
+unfolding LV_def
+apply(auto elim!: Prf_elims simp add: image_def)
+apply(case_tac vs1)
+apply(auto)
+apply(case_tac vs2)
+apply(auto)
+apply(subst append.simps(1)[symmetric])
+apply(rule Prf.intros)
+ apply(auto)
+ apply (metis le_imp_less_Suc length_greater_0_conv less_antisym list.exhaust list.set_intros(1) not_less_eq zero_le)
+ prefer 2
+ using nth_mem apply blast
+ apply(case_tac vs1)
+ apply (smt Groups.add_ac(2) Prf.intros(9) add.right_neutral add_Suc_right append.simps(1) insert_iff length_append list.set(2) list.size(3) list.size(4))
+ apply(auto)
+done
+
+lemma LV_NTIMES_4:
+ "LV (NTIMES r n) [] = Stars_Pow (LV r []) n"
+ apply(induct n)
+ apply(simp add: LV_def)
+ apply(auto elim!: Prf_elims simp add: image_def)[1]
+ apply(subst append.simps[symmetric])
+ apply(rule Prf.intros)
+ apply(simp_all)
+ apply(simp add: LV_NTIMES_3 image_def Stars_Cons_def)
+ apply blast
+ done
+
+lemma LV_NTIMES_5:
+ "LV (NTIMES r n) s \<subseteq> Stars_Append (LV (STAR r) s) (\<Union>i\<le>n. LV (NTIMES r i) [])"
+apply(auto simp add: LV_def)
+apply(auto elim!: Prf_elims)
+ apply(auto simp add: Stars_Append_def)
+ apply(rule_tac x="vs1" in exI)
+ apply(rule_tac x="vs2" in exI)
+ apply(auto)
+ using Prf.intros(6) apply(auto)
+ apply(rule_tac x="length vs2" in bexI)
+ thm Prf.intros
+ apply(subst append.simps(1)[symmetric])
+ apply(rule Prf.intros)
+ apply(auto)[1]
+ apply(auto)[1]
+ apply(simp)
+ apply(simp)
+ done
+
+lemma ttty:
+ "LV (FROMNTIMES r n) [] = Stars_Pow (LV r []) n"
+ apply(induct n)
+ apply(simp add: LV_def)
+ apply(auto elim: Prf_elims simp add: image_def)[1]
+ prefer 2
+ apply(subst append.simps[symmetric])
+ apply(rule Prf.intros)
+ apply(simp_all)
+ apply(erule Prf_elims)
+ apply(case_tac vs1)
+ apply(simp)
+ apply(simp)
+ apply(case_tac x)
+ apply(simp_all)
+ apply(simp add: LV_FROMNTIMES_3 image_def Stars_Cons_def)
+ apply blast
+ done
+
+lemma LV_FROMNTIMES_5:
+ "LV (FROMNTIMES r n) s \<subseteq> Stars_Append (LV (STAR r) s) (\<Union>i\<le>n. LV (FROMNTIMES r i) [])"
+apply(auto simp add: LV_def)
+apply(auto elim!: Prf_elims)
+ apply(auto simp add: Stars_Append_def)
+ apply(rule_tac x="vs1" in exI)
+ apply(rule_tac x="vs2" in exI)
+ apply(auto)
+ using Prf.intros(6) apply(auto)
+ apply(rule_tac x="length vs2" in bexI)
+ thm Prf.intros
+ apply(subst append.simps(1)[symmetric])
+ apply(rule Prf.intros)
+ apply(auto)[1]
+ apply(auto)[1]
+ apply(simp)
+ apply(simp)
+ apply(rule_tac x="vs" in exI)
+ apply(rule_tac x="[]" in exI)
+ apply(auto)
+ by (metis Prf.intros(9) append_Nil atMost_iff empty_iff le_imp_less_Suc less_antisym list.set(1) nth_mem zero_le)
+
+lemma LV_FROMNTIMES_6:
+ assumes "\<forall>s. finite (LV r s)"
+ shows "finite (LV (FROMNTIMES r n) s)"
+ apply(rule finite_subset)
+ apply(rule LV_FROMNTIMES_5)
+ apply(rule finite_Stars_Append)
+ apply(rule LV_STAR_finite)
+ apply(rule assms)
+ apply(rule finite_UN_I)
+ apply(auto)
+ by (simp add: assms finite_Stars_Pow ttty)
+
+lemma LV_NMTIMES_5:
+ "LV (NMTIMES r n m) s \<subseteq> Stars_Append (LV (STAR r) s) (\<Union>i\<le>n. LV (FROMNTIMES r i) [])"
+apply(auto simp add: LV_def)
+apply(auto elim!: Prf_elims)
+ apply(auto simp add: Stars_Append_def)
+ apply(rule_tac x="vs1" in exI)
+ apply(rule_tac x="vs2" in exI)
+ apply(auto)
+ using Prf.intros(6) apply(auto)
+ apply(rule_tac x="length vs2" in bexI)
+ thm Prf.intros
+ apply(subst append.simps(1)[symmetric])
+ apply(rule Prf.intros)
+ apply(auto)[1]
+ apply(auto)[1]
+ apply(simp)
+ apply(simp)
+ apply(rule_tac x="vs" in exI)
+ apply(rule_tac x="[]" in exI)
+ apply(auto)
+ by (metis Prf.intros(9) append_Nil atMost_iff empty_iff le_imp_less_Suc less_antisym list.set(1) nth_mem zero_le)
+
+lemma LV_NMTIMES_6:
+ assumes "\<forall>s. finite (LV r s)"
+ shows "finite (LV (NMTIMES r n m) s)"
+ apply(rule finite_subset)
+ apply(rule LV_NMTIMES_5)
+ apply(rule finite_Stars_Append)
+ apply(rule LV_STAR_finite)
+ apply(rule assms)
+ apply(rule finite_UN_I)
+ apply(auto)
+ by (simp add: assms finite_Stars_Pow ttty)
+
+
+lemma LV_finite:
+ shows "finite (LV r s)"
+proof(induct r arbitrary: s)
+ case (ZERO s)
+ show "finite (LV ZERO s)" by (simp add: LV_simps)
+next
+ case (ONE s)
+ show "finite (LV ONE s)" by (simp add: LV_simps)
+next
+ case (CHAR c s)
+ show "finite (LV (CHAR c) s)" by (simp add: LV_simps)
+next
+ case (ALT r1 r2 s)
+ then show "finite (LV (ALT r1 r2) s)" by (simp add: LV_simps)
+next
+ case (SEQ r1 r2 s)
+ define f where "f \<equiv> \<lambda>(v1, v2). Seq v1 v2"
+ define S1 where "S1 \<equiv> \<Union>s' \<in> Prefixes s. LV r1 s'"
+ define S2 where "S2 \<equiv> \<Union>s' \<in> Suffixes s. LV r2 s'"
+ have IHs: "\<And>s. finite (LV r1 s)" "\<And>s. finite (LV r2 s)" by fact+
+ then have "finite S1" "finite S2" unfolding S1_def S2_def
+ by (simp_all add: finite_Prefixes finite_Suffixes)
+ moreover
+ have "LV (SEQ r1 r2) s \<subseteq> f ` (S1 \<times> S2)"
+ unfolding f_def S1_def S2_def
+ unfolding LV_def image_def prefix_def suffix_def
+ apply (auto elim!: Prf_elims)
+ by (metis (mono_tags, lifting) mem_Collect_eq)
+ ultimately
+ show "finite (LV (SEQ r1 r2) s)"
+ by (simp add: finite_subset)
+next
+ case (STAR r s)
+ then show "finite (LV (STAR r) s)" by (simp add: LV_STAR_finite)
+next
+ case (UPNTIMES r n s)
+ have "\<And>s. finite (LV r s)" by fact
+ then show "finite (LV (UPNTIMES r n) s)"
+ by (meson LV_STAR_finite LV_UPNTIMES_STAR rev_finite_subset)
+next
+ case (FROMNTIMES r n s)
+ have "\<And>s. finite (LV r s)" by fact
+ then show "finite (LV (FROMNTIMES r n) s)"
+ by (simp add: LV_FROMNTIMES_6)
+next
+ case (NTIMES r n s)
+ have "\<And>s. finite (LV r s)" by fact
+ then show "finite (LV (NTIMES r n) s)"
+ by (metis (no_types, lifting) LV_NTIMES_4 LV_NTIMES_5 LV_STAR_finite finite_Stars_Append finite_Stars_Pow finite_UN_I finite_atMost finite_subset)
+next
+ case (NMTIMES r n m s)
+ have "\<And>s. finite (LV r s)" by fact
+ then show "finite (LV (NMTIMES r n m) s)"
+ by (simp add: LV_NMTIMES_6)
+qed
+
+
+
+section {* Our POSIX Definition *}
+
+inductive
+ Posix :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100)
+where
+ Posix_ONE: "[] \<in> ONE \<rightarrow> Void"
+| Posix_CHAR: "[c] \<in> (CHAR c) \<rightarrow> (Char c)"
+| Posix_ALT1: "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)"
+| Posix_ALT2: "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)"
+| Posix_SEQ: "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
+ \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow>
+ (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
+| Posix_STAR1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
+ \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
+ \<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)"
+| Posix_STAR2: "[] \<in> STAR r \<rightarrow> Stars []"
+| Posix_NTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> NTIMES r (n - 1) \<rightarrow> Stars vs; flat v \<noteq> []; 0 < n;
+ \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (NTIMES r (n - 1)))\<rbrakk>
+ \<Longrightarrow> (s1 @ s2) \<in> NTIMES r n \<rightarrow> Stars (v # vs)"
+| Posix_NTIMES2: "\<lbrakk>\<forall>v \<in> set vs. [] \<in> r \<rightarrow> v; length vs = n\<rbrakk>
+ \<Longrightarrow> [] \<in> NTIMES r n \<rightarrow> Stars vs"
+| Posix_UPNTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> UPNTIMES r (n - 1) \<rightarrow> Stars vs; flat v \<noteq> []; 0 < n;
+ \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (n - 1)))\<rbrakk>
+ \<Longrightarrow> (s1 @ s2) \<in> UPNTIMES r n \<rightarrow> Stars (v # vs)"
+| Posix_UPNTIMES2: "[] \<in> UPNTIMES r n \<rightarrow> Stars []"
+| Posix_FROMNTIMES2: "\<lbrakk>\<forall>v \<in> set vs. [] \<in> r \<rightarrow> v; length vs = n\<rbrakk>
+ \<Longrightarrow> [] \<in> FROMNTIMES r n \<rightarrow> Stars vs"
+| Posix_FROMNTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> FROMNTIMES r (n - 1) \<rightarrow> Stars vs; flat v \<noteq> []; 0 < n;
+ \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (FROMNTIMES r (n - 1)))\<rbrakk>
+ \<Longrightarrow> (s1 @ s2) \<in> FROMNTIMES r n \<rightarrow> Stars (v # vs)"
+| Posix_FROMNTIMES3: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
+ \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
+ \<Longrightarrow> (s1 @ s2) \<in> FROMNTIMES r 0 \<rightarrow> Stars (v # vs)"
+| Posix_NMTIMES2: "\<lbrakk>\<forall>v \<in> set vs. [] \<in> r \<rightarrow> v; length vs = n; n \<le> m\<rbrakk>
+ \<Longrightarrow> [] \<in> NMTIMES r n m \<rightarrow> Stars vs"
+| Posix_NMTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> NMTIMES r (n - 1) (m - 1) \<rightarrow> Stars vs; flat v \<noteq> []; 0 < n; n \<le> m;
+ \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (NMTIMES r (n - 1) (m - 1)))\<rbrakk>
+ \<Longrightarrow> (s1 @ s2) \<in> NMTIMES r n m \<rightarrow> Stars (v # vs)"
+| Posix_NMTIMES3: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> UPNTIMES r (m - 1) \<rightarrow> Stars vs; flat v \<noteq> []; 0 < m;
+ \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (m - 1)))\<rbrakk>
+ \<Longrightarrow> (s1 @ s2) \<in> NMTIMES r 0 m \<rightarrow> Stars (v # vs)"
+
+inductive_cases Posix_elims:
+ "s \<in> ZERO \<rightarrow> v"
+ "s \<in> ONE \<rightarrow> v"
+ "s \<in> CHAR c \<rightarrow> v"
+ "s \<in> ALT r1 r2 \<rightarrow> v"
+ "s \<in> SEQ r1 r2 \<rightarrow> v"
+ "s \<in> STAR r \<rightarrow> v"
+ "s \<in> NTIMES r n \<rightarrow> v"
+ "s \<in> UPNTIMES r n \<rightarrow> v"
+ "s \<in> FROMNTIMES r n \<rightarrow> v"
+ "s \<in> NMTIMES r n m \<rightarrow> v"
+
+lemma Posix1:
+ assumes "s \<in> r \<rightarrow> v"
+ shows "s \<in> L r" "flat v = s"
+using assms
+ apply(induct s r v rule: Posix.induct)
+ apply(auto simp add: Sequ_def)[18]
+ apply(case_tac n)
+ apply(simp)
+ apply(simp add: Sequ_def)
+ apply(auto)[1]
+ apply(simp)
+ apply(clarify)
+ apply(rule_tac x="Suc x" in bexI)
+ apply(simp add: Sequ_def)
+ apply(auto)[5]
+ using nth_mem nullable.simps(9) nullable_correctness apply auto[1]
+ apply simp
+ apply(simp)
+ apply(clarify)
+ apply(rule_tac x="Suc x" in bexI)
+ apply(simp add: Sequ_def)
+ apply(auto)[3]
+ defer
+ apply(simp)
+ apply fastforce
+ apply(simp)
+ apply(simp)
+ apply(clarify)
+ apply(rule_tac x="Suc x" in bexI)
+ apply(auto simp add: Sequ_def)[2]
+ apply(simp)
+ apply(simp)
+ apply(clarify)
+ apply(rule_tac x="Suc x" in bexI)
+ apply(auto simp add: Sequ_def)[2]
+ apply(simp)
+ apply(simp add: Star.step Star_Pow)
+done
+
+text {*
+ Our Posix definition determines a unique value.
+*}
+
+lemma List_eq_zipI:
+ assumes "\<forall>(v1, v2) \<in> set (zip vs1 vs2). v1 = v2"
+ and "length vs1 = length vs2"
+ shows "vs1 = vs2"
+ using assms
+ apply(induct vs1 arbitrary: vs2)
+ apply(case_tac vs2)
+ apply(simp)
+ apply(simp)
+ apply(case_tac vs2)
+ apply(simp)
+ apply(simp)
+done
+
+lemma Posix_determ:
+ assumes "s \<in> r \<rightarrow> v1" "s \<in> r \<rightarrow> v2"
+ shows "v1 = v2"
+using assms
+proof (induct s r v1 arbitrary: v2 rule: Posix.induct)
+ case (Posix_ONE v2)
+ have "[] \<in> ONE \<rightarrow> v2" by fact
+ then show "Void = v2" by cases auto
+next
+ case (Posix_CHAR c v2)
+ have "[c] \<in> CHAR c \<rightarrow> v2" by fact
+ then show "Char c = v2" by cases auto
+next
+ case (Posix_ALT1 s r1 v r2 v2)
+ have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
+ moreover
+ have "s \<in> r1 \<rightarrow> v" by fact
+ then have "s \<in> L r1" by (simp add: Posix1)
+ ultimately obtain v' where eq: "v2 = Left v'" "s \<in> r1 \<rightarrow> v'" by cases auto
+ moreover
+ have IH: "\<And>v2. s \<in> r1 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
+ ultimately have "v = v'" by simp
+ then show "Left v = v2" using eq by simp
+next
+ case (Posix_ALT2 s r2 v r1 v2)
+ have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
+ moreover
+ have "s \<notin> L r1" by fact
+ ultimately obtain v' where eq: "v2 = Right v'" "s \<in> r2 \<rightarrow> v'"
+ by cases (auto simp add: Posix1)
+ moreover
+ have IH: "\<And>v2. s \<in> r2 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
+ ultimately have "v = v'" by simp
+ then show "Right v = v2" using eq by simp
+next
+ case (Posix_SEQ s1 r1 v1 s2 r2 v2 v')
+ have "(s1 @ s2) \<in> SEQ r1 r2 \<rightarrow> v'"
+ "s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact+
+ then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \<in> r1 \<rightarrow> v1'" "s2 \<in> r2 \<rightarrow> v2'"
+ apply(cases) apply (auto simp add: append_eq_append_conv2)
+ using Posix1(1) by fastforce+
+ moreover
+ have IHs: "\<And>v1'. s1 \<in> r1 \<rightarrow> v1' \<Longrightarrow> v1 = v1'"
+ "\<And>v2'. s2 \<in> r2 \<rightarrow> v2' \<Longrightarrow> v2 = v2'" by fact+
+ ultimately show "Seq v1 v2 = v'" by simp
+next
+ case (Posix_STAR1 s1 r v s2 vs v2)
+ have "(s1 @ s2) \<in> STAR r \<rightarrow> v2"
+ "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+
+ then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')"
+ apply(cases) apply (auto simp add: append_eq_append_conv2)
+ using Posix1(1) apply fastforce
+ apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2)
+ using Posix1(2) by blast
+ moreover
+ have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
+ "\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
+ ultimately show "Stars (v # vs) = v2" by auto
+next
+ case (Posix_STAR2 r v2)
+ have "[] \<in> STAR r \<rightarrow> v2" by fact
+ then show "Stars [] = v2" by cases (auto simp add: Posix1)
+next
+ case (Posix_NTIMES2 vs r n v2)
+ then show "Stars vs = v2"
+ apply(erule_tac Posix_elims)
+ apply(auto)
+ apply (simp add: Posix1(2))
+ apply(rule List_eq_zipI)
+ apply(auto)
+ by (meson in_set_zipE)
+next
+ case (Posix_NTIMES1 s1 r v s2 n vs v2)
+ have "(s1 @ s2) \<in> NTIMES r n \<rightarrow> v2"
+ "s1 \<in> r \<rightarrow> v" "s2 \<in> NTIMES r (n - 1) \<rightarrow> Stars vs" "flat v \<noteq> []"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (NTIMES r (n - 1 )))" by fact+
+ then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (NTIMES r (n - 1)) \<rightarrow> (Stars vs')"
+ apply(cases) apply (auto simp add: append_eq_append_conv2)
+ using Posix1(1) apply fastforce
+ apply (metis One_nat_def Posix1(1) Posix_NTIMES1.hyps(7) append.right_neutral append_self_conv2)
+ using Posix1(2) by blast
+ moreover
+ have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
+ "\<And>v2. s2 \<in> NTIMES r (n - 1) \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
+ ultimately show "Stars (v # vs) = v2" by auto
+next
+ case (Posix_UPNTIMES1 s1 r v s2 n vs v2)
+ have "(s1 @ s2) \<in> UPNTIMES r n \<rightarrow> v2"
+ "s1 \<in> r \<rightarrow> v" "s2 \<in> UPNTIMES r (n - 1) \<rightarrow> Stars vs" "flat v \<noteq> []"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (n - 1 )))" by fact+
+ then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (UPNTIMES r (n - 1)) \<rightarrow> (Stars vs')"
+ apply(cases) apply (auto simp add: append_eq_append_conv2)
+ using Posix1(1) apply fastforce
+ apply (metis One_nat_def Posix1(1) Posix_UPNTIMES1.hyps(7) append.right_neutral append_self_conv2)
+ using Posix1(2) by blast
+ moreover
+ have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
+ "\<And>v2. s2 \<in> UPNTIMES r (n - 1) \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
+ ultimately show "Stars (v # vs) = v2" by auto
+next
+ case (Posix_UPNTIMES2 r n v2)
+ then show "Stars [] = v2"
+ apply(erule_tac Posix_elims)
+ apply(auto)
+ by (simp add: Posix1(2))
+next
+ case (Posix_FROMNTIMES1 s1 r v s2 n vs v2)
+ have "(s1 @ s2) \<in> FROMNTIMES r n \<rightarrow> v2"
+ "s1 \<in> r \<rightarrow> v" "s2 \<in> FROMNTIMES r (n - 1) \<rightarrow> Stars vs" "flat v \<noteq> []" "0 < n"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (FROMNTIMES r (n - 1 )))" by fact+
+ then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (FROMNTIMES r (n - 1)) \<rightarrow> (Stars vs')"
+ apply(cases) apply (auto simp add: append_eq_append_conv2)
+ using Posix1(1) Posix1(2) apply blast
+ apply(case_tac n)
+ apply(simp)
+ apply(simp)
+ apply(drule_tac x="va" in meta_spec)
+ apply(drule_tac x="vs" in meta_spec)
+ apply(simp)
+ apply(drule meta_mp)
+ apply (metis L.simps(9) Posix1(1) UN_E append.right_neutral append_Nil diff_Suc_1 local.Posix_FROMNTIMES1(4) val.inject(5))
+ apply (metis L.simps(9) Posix1(1) UN_E append.right_neutral append_Nil)
+ by (metis One_nat_def Posix1(1) Posix_FROMNTIMES1.hyps(7) self_append_conv self_append_conv2)
+ moreover
+ have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
+ "\<And>v2. s2 \<in> FROMNTIMES r (n - 1) \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
+ ultimately show "Stars (v # vs) = v2" by auto
+next
+ case (Posix_FROMNTIMES2 vs r n v2)
+ then show "Stars vs = v2"
+ apply(erule_tac Posix_elims)
+ apply(auto)
+ apply(rule List_eq_zipI)
+ apply(auto)
+ apply(meson in_set_zipE)
+ apply (simp add: Posix1(2))
+ using Posix1(2) by blast
+next
+ case (Posix_FROMNTIMES3 s1 r v s2 vs v2)
+ have "(s1 @ s2) \<in> FROMNTIMES r 0 \<rightarrow> v2"
+ "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+
+ then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')"
+ apply(cases) apply (auto simp add: append_eq_append_conv2)
+ using Posix1(2) apply fastforce
+ using Posix1(1) apply fastforce
+ by (metis Posix1(1) Posix_FROMNTIMES3.hyps(6) append.right_neutral append_Nil)
+ moreover
+ have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
+ "\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
+ ultimately show "Stars (v # vs) = v2" by auto
+next
+ case (Posix_NMTIMES1 s1 r v s2 n m vs v2)
+ have "(s1 @ s2) \<in> NMTIMES r n m \<rightarrow> v2"
+ "s1 \<in> r \<rightarrow> v" "s2 \<in> NMTIMES r (n - 1) (m - 1) \<rightarrow> Stars vs" "flat v \<noteq> []"
+ "0 < n" "n \<le> m"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (NMTIMES r (n - 1) (m - 1)))" by fact+
+ then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'"
+ "s2 \<in> (NMTIMES r (n - 1) (m - 1)) \<rightarrow> (Stars vs')"
+ apply(cases) apply (auto simp add: append_eq_append_conv2)
+ using Posix1(1) Posix1(2) apply blast
+ apply(case_tac n)
+ apply(simp)
+ apply(simp)
+ apply(case_tac m)
+ apply(simp)
+ apply(simp)
+ apply(drule_tac x="va" in meta_spec)
+ apply(drule_tac x="vs" in meta_spec)
+ apply(simp)
+ apply(drule meta_mp)
+ apply(drule Posix1(1))
+ apply(drule Posix1(1))
+ apply(drule Posix1(1))
+ apply(frule Posix1(1))
+ apply(simp)
+ using Posix_NMTIMES1.hyps(4) apply force
+ apply (metis L.simps(10) Posix1(1) UN_E append_Nil2 append_self_conv2)
+ by (metis One_nat_def Posix1(1) Posix_NMTIMES1.hyps(8) append.right_neutral append_Nil)
+ moreover
+ have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
+ "\<And>v2. s2 \<in> NMTIMES r (n - 1) (m - 1) \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
+ ultimately show "Stars (v # vs) = v2" by auto
+next
+ case (Posix_NMTIMES2 vs r n m v2)
+ then show "Stars vs = v2"
+ apply(erule_tac Posix_elims)
+ apply(simp)
+ apply(rule List_eq_zipI)
+ apply(auto)
+ apply (meson in_set_zipE)
+ apply (simp add: Posix1(2))
+ apply(erule_tac Posix_elims)
+ apply(auto)
+ apply (simp add: Posix1(2))+
+ done
+next
+ case (Posix_NMTIMES3 s1 r v s2 m vs v2)
+ have "(s1 @ s2) \<in> NMTIMES r 0 m \<rightarrow> v2"
+ "s1 \<in> r \<rightarrow> v" "s2 \<in> UPNTIMES r (m - 1) \<rightarrow> Stars vs" "flat v \<noteq> []" "0 < m"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (m - 1 )))" by fact+
+ then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (UPNTIMES r (m - 1)) \<rightarrow> (Stars vs')"
+ apply(cases) apply (auto simp add: append_eq_append_conv2)
+ using Posix1(2) apply blast
+ apply (smt L.simps(7) Posix1(1) UN_E append_eq_append_conv2)
+ by (metis One_nat_def Posix1(1) Posix_NMTIMES3.hyps(7) append.right_neutral append_Nil)
+ moreover
+ have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
+ "\<And>v2. s2 \<in> UPNTIMES r (m - 1) \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
+ ultimately show "Stars (v # vs) = v2" by auto
+qed
+
+
+text {*
+ Our POSIX value is a lexical value.
+*}
+
+lemma Posix_LV:
+ assumes "s \<in> r \<rightarrow> v"
+ shows "v \<in> LV r s"
+using assms unfolding LV_def
+apply(induct rule: Posix.induct)
+ apply(auto simp add: intro!: Prf.intros elim!: Prf_elims)[7]
+ defer
+ defer
+ apply(auto simp add: intro!: Prf.intros elim!: Prf_elims)[2]
+ apply (metis (mono_tags, lifting) Prf.intros(9) append_Nil empty_iff flat_Stars flats_empty list.set(1) mem_Collect_eq)
+ apply(simp)
+ apply(clarify)
+ apply(case_tac n)
+ apply(simp)
+ apply(simp)
+ apply(erule Prf_elims)
+ apply(simp)
+ apply(subst append.simps(2)[symmetric])
+ apply(rule Prf.intros)
+ apply(simp)
+ apply(simp)
+ apply(simp)
+ apply(simp)
+ apply(rule Prf.intros)
+ apply(simp)
+ apply(simp)
+ apply(simp)
+ apply(clarify)
+ apply(erule Prf_elims)
+ apply(simp)
+ apply(rule Prf.intros)
+ apply(simp)
+ apply(simp)
+ (* NTIMES *)
+ prefer 4
+ apply(simp)
+ apply(case_tac n)
+ apply(simp)
+ apply(simp)
+ apply(clarify)
+ apply(rotate_tac 5)
+ apply(erule Prf_elims)
+ apply(simp)
+ apply(subst append.simps(2)[symmetric])
+ apply(rule Prf.intros)
+ apply(simp)
+ apply(simp)
+ apply(simp)
+ prefer 4
+ apply(simp)
+ apply (metis Prf.intros(8) length_removeAll_less less_irrefl_nat removeAll.simps(1) self_append_conv2)
+ (* NMTIMES *)
+ apply(simp)
+ apply (metis Prf.intros(11) append_Nil empty_iff list.set(1))
+ apply(simp)
+ apply(clarify)
+ apply(rotate_tac 6)
+ apply(erule Prf_elims)
+ apply(simp)
+ apply(subst append.simps(2)[symmetric])
+ apply(rule Prf.intros)
+ apply(simp)
+ apply(simp)
+ apply(simp)
+ apply(simp)
+ apply(rule Prf.intros)
+ apply(simp)
+ apply(simp)
+ apply(simp)
+ apply(simp)
+ apply(clarify)
+ apply(rotate_tac 6)
+ apply(erule Prf_elims)
+ apply(simp)
+ apply(rule Prf.intros)
+ apply(simp)
+ apply(simp)
+ apply(simp)
+done
+
+end
\ No newline at end of file