|
1 |
|
2 theory SpecExt |
|
3 imports Main (*"~~/src/HOL/Library/Sublist"*) |
|
4 begin |
|
5 |
|
6 section {* Sequential Composition of Languages *} |
|
7 |
|
8 definition |
|
9 Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100) |
|
10 where |
|
11 "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}" |
|
12 |
|
13 text {* Two Simple Properties about Sequential Composition *} |
|
14 |
|
15 lemma Sequ_empty_string [simp]: |
|
16 shows "A ;; {[]} = A" |
|
17 and "{[]} ;; A = A" |
|
18 by (simp_all add: Sequ_def) |
|
19 |
|
20 lemma Sequ_empty [simp]: |
|
21 shows "A ;; {} = {}" |
|
22 and "{} ;; A = {}" |
|
23 by (simp_all add: Sequ_def) |
|
24 |
|
25 lemma Sequ_assoc: |
|
26 shows "(A ;; B) ;; C = A ;; (B ;; C)" |
|
27 apply(auto simp add: Sequ_def) |
|
28 apply blast |
|
29 by (metis append_assoc) |
|
30 |
|
31 lemma Sequ_Union_in: |
|
32 shows "(A ;; (\<Union>x\<in> B. C x)) = (\<Union>x\<in> B. A ;; C x)" |
|
33 by (auto simp add: Sequ_def) |
|
34 |
|
35 section {* Semantic Derivative (Left Quotient) of Languages *} |
|
36 |
|
37 definition |
|
38 Der :: "char \<Rightarrow> string set \<Rightarrow> string set" |
|
39 where |
|
40 "Der c A \<equiv> {s. c # s \<in> A}" |
|
41 |
|
42 definition |
|
43 Ders :: "string \<Rightarrow> string set \<Rightarrow> string set" |
|
44 where |
|
45 "Ders s A \<equiv> {s'. s @ s' \<in> A}" |
|
46 |
|
47 lemma Der_null [simp]: |
|
48 shows "Der c {} = {}" |
|
49 unfolding Der_def |
|
50 by auto |
|
51 |
|
52 lemma Der_empty [simp]: |
|
53 shows "Der c {[]} = {}" |
|
54 unfolding Der_def |
|
55 by auto |
|
56 |
|
57 lemma Der_char [simp]: |
|
58 shows "Der c {[d]} = (if c = d then {[]} else {})" |
|
59 unfolding Der_def |
|
60 by auto |
|
61 |
|
62 lemma Der_union [simp]: |
|
63 shows "Der c (A \<union> B) = Der c A \<union> Der c B" |
|
64 unfolding Der_def |
|
65 by auto |
|
66 |
|
67 lemma Der_UNION [simp]: |
|
68 shows "Der c (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. Der c (B x))" |
|
69 by (auto simp add: Der_def) |
|
70 |
|
71 lemma Der_Sequ [simp]: |
|
72 shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})" |
|
73 unfolding Der_def Sequ_def |
|
74 by (auto simp add: Cons_eq_append_conv) |
|
75 |
|
76 |
|
77 section {* Kleene Star for Languages *} |
|
78 |
|
79 inductive_set |
|
80 Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102) |
|
81 for A :: "string set" |
|
82 where |
|
83 start[intro]: "[] \<in> A\<star>" |
|
84 | step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>" |
|
85 |
|
86 (* Arden's lemma *) |
|
87 |
|
88 lemma Star_cases: |
|
89 shows "A\<star> = {[]} \<union> A ;; A\<star>" |
|
90 unfolding Sequ_def |
|
91 by (auto) (metis Star.simps) |
|
92 |
|
93 lemma Star_decomp: |
|
94 assumes "c # x \<in> A\<star>" |
|
95 shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A\<star>" |
|
96 using assms |
|
97 by (induct x\<equiv>"c # x" rule: Star.induct) |
|
98 (auto simp add: append_eq_Cons_conv) |
|
99 |
|
100 lemma Star_Der_Sequ: |
|
101 shows "Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>" |
|
102 unfolding Der_def Sequ_def |
|
103 by(auto simp add: Star_decomp) |
|
104 |
|
105 |
|
106 lemma Der_star [simp]: |
|
107 shows "Der c (A\<star>) = (Der c A) ;; A\<star>" |
|
108 proof - |
|
109 have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)" |
|
110 by (simp only: Star_cases[symmetric]) |
|
111 also have "... = Der c (A ;; A\<star>)" |
|
112 by (simp only: Der_union Der_empty) (simp) |
|
113 also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})" |
|
114 by simp |
|
115 also have "... = (Der c A) ;; A\<star>" |
|
116 using Star_Der_Sequ by auto |
|
117 finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" . |
|
118 qed |
|
119 |
|
120 section {* Power operation for Sets *} |
|
121 |
|
122 fun |
|
123 Pow :: "string set \<Rightarrow> nat \<Rightarrow> string set" ("_ \<up> _" [101, 102] 101) |
|
124 where |
|
125 "A \<up> 0 = {[]}" |
|
126 | "A \<up> (Suc n) = A ;; (A \<up> n)" |
|
127 |
|
128 lemma Pow_empty [simp]: |
|
129 shows "[] \<in> A \<up> n \<longleftrightarrow> (n = 0 \<or> [] \<in> A)" |
|
130 by(induct n) (auto simp add: Sequ_def) |
|
131 |
|
132 lemma Pow_Suc_rev: |
|
133 "A \<up> (Suc n) = (A \<up> n) ;; A" |
|
134 apply(induct n arbitrary: A) |
|
135 apply(simp_all) |
|
136 by (metis Sequ_assoc) |
|
137 |
|
138 |
|
139 lemma Pow_decomp: |
|
140 assumes "c # x \<in> A \<up> n" |
|
141 shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A \<up> (n - 1)" |
|
142 using assms |
|
143 apply(induct n) |
|
144 apply(auto simp add: Cons_eq_append_conv Sequ_def) |
|
145 apply(case_tac n) |
|
146 apply(auto simp add: Sequ_def) |
|
147 apply(blast) |
|
148 done |
|
149 |
|
150 lemma Star_Pow: |
|
151 assumes "s \<in> A\<star>" |
|
152 shows "\<exists>n. s \<in> A \<up> n" |
|
153 using assms |
|
154 apply(induct) |
|
155 apply(auto) |
|
156 apply(rule_tac x="Suc n" in exI) |
|
157 apply(auto simp add: Sequ_def) |
|
158 done |
|
159 |
|
160 lemma Pow_Star: |
|
161 assumes "s \<in> A \<up> n" |
|
162 shows "s \<in> A\<star>" |
|
163 using assms |
|
164 apply(induct n arbitrary: s) |
|
165 apply(auto simp add: Sequ_def) |
|
166 done |
|
167 |
|
168 lemma |
|
169 assumes "[] \<in> A" "n \<noteq> 0" "A \<noteq> {}" |
|
170 shows "A \<up> (Suc n) = A \<up> n" |
|
171 |
|
172 lemma Der_Pow_0: |
|
173 shows "Der c (A \<up> 0) = {}" |
|
174 by(simp add: Der_def) |
|
175 |
|
176 lemma Der_Pow_Suc: |
|
177 shows "Der c (A \<up> (Suc n)) = (Der c A) ;; (A \<up> n)" |
|
178 unfolding Der_def Sequ_def |
|
179 apply(auto simp add: Cons_eq_append_conv Sequ_def dest!: Pow_decomp) |
|
180 apply(case_tac n) |
|
181 apply(force simp add: Sequ_def)+ |
|
182 done |
|
183 |
|
184 lemma Der_Pow [simp]: |
|
185 shows "Der c (A \<up> n) = (if n = 0 then {} else (Der c A) ;; (A \<up> (n - 1)))" |
|
186 apply(case_tac n) |
|
187 apply(simp_all del: Pow.simps add: Der_Pow_0 Der_Pow_Suc) |
|
188 done |
|
189 |
|
190 lemma Der_Pow_Sequ [simp]: |
|
191 shows "Der c (A ;; A \<up> n) = (Der c A) ;; (A \<up> n)" |
|
192 by (simp only: Pow.simps[symmetric] Der_Pow) (simp) |
|
193 |
|
194 |
|
195 lemma Pow_Sequ_Un: |
|
196 assumes "0 < x" |
|
197 shows "(\<Union>n \<in> {..x}. (A \<up> n)) = ({[]} \<union> (\<Union>n \<in> {..x - Suc 0}. A ;; (A \<up> n)))" |
|
198 using assms |
|
199 apply(auto simp add: Sequ_def) |
|
200 apply(smt Pow.elims Sequ_def Suc_le_mono Suc_pred atMost_iff empty_iff insert_iff mem_Collect_eq) |
|
201 apply(rule_tac x="Suc xa" in bexI) |
|
202 apply(auto simp add: Sequ_def) |
|
203 done |
|
204 |
|
205 lemma Pow_Sequ_Un2: |
|
206 assumes "0 < x" |
|
207 shows "(\<Union>n \<in> {x..}. (A \<up> n)) = (\<Union>n \<in> {x - Suc 0..}. A ;; (A \<up> n))" |
|
208 using assms |
|
209 apply(auto simp add: Sequ_def) |
|
210 apply(case_tac n) |
|
211 apply(auto simp add: Sequ_def) |
|
212 apply fastforce |
|
213 apply(case_tac x) |
|
214 apply(auto) |
|
215 apply(rule_tac x="Suc xa" in bexI) |
|
216 apply(auto simp add: Sequ_def) |
|
217 done |
|
218 |
|
219 section {* Regular Expressions *} |
|
220 |
|
221 datatype rexp = |
|
222 ZERO |
|
223 | ONE |
|
224 | CHAR char |
|
225 | SEQ rexp rexp |
|
226 | ALT rexp rexp |
|
227 | STAR rexp |
|
228 | UPNTIMES rexp nat |
|
229 | NTIMES rexp nat |
|
230 | FROMNTIMES rexp nat |
|
231 | NMTIMES rexp nat nat |
|
232 | NOT rexp |
|
233 |
|
234 section {* Semantics of Regular Expressions *} |
|
235 |
|
236 fun |
|
237 L :: "rexp \<Rightarrow> string set" |
|
238 where |
|
239 "L (ZERO) = {}" |
|
240 | "L (ONE) = {[]}" |
|
241 | "L (CHAR c) = {[c]}" |
|
242 | "L (SEQ r1 r2) = (L r1) ;; (L r2)" |
|
243 | "L (ALT r1 r2) = (L r1) \<union> (L r2)" |
|
244 | "L (STAR r) = (L r)\<star>" |
|
245 | "L (UPNTIMES r n) = (\<Union>i\<in>{..n} . (L r) \<up> i)" |
|
246 | "L (NTIMES r n) = (L r) \<up> n" |
|
247 | "L (FROMNTIMES r n) = (\<Union>i\<in>{n..} . (L r) \<up> i)" |
|
248 | "L (NMTIMES r n m) = (\<Union>i\<in>{n..m} . (L r) \<up> i)" |
|
249 | "L (NOT r) = ((UNIV:: string set) - L r)" |
|
250 |
|
251 section {* Nullable, Derivatives *} |
|
252 |
|
253 fun |
|
254 nullable :: "rexp \<Rightarrow> bool" |
|
255 where |
|
256 "nullable (ZERO) = False" |
|
257 | "nullable (ONE) = True" |
|
258 | "nullable (CHAR c) = False" |
|
259 | "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)" |
|
260 | "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)" |
|
261 | "nullable (STAR r) = True" |
|
262 | "nullable (UPNTIMES r n) = True" |
|
263 | "nullable (NTIMES r n) = (if n = 0 then True else nullable r)" |
|
264 | "nullable (FROMNTIMES r n) = (if n = 0 then True else nullable r)" |
|
265 | "nullable (NMTIMES r n m) = (if m < n then False else (if n = 0 then True else nullable r))" |
|
266 | "nullable (NOT r) = (\<not> nullable r)" |
|
267 |
|
268 fun |
|
269 der :: "char \<Rightarrow> rexp \<Rightarrow> rexp" |
|
270 where |
|
271 "der c (ZERO) = ZERO" |
|
272 | "der c (ONE) = ZERO" |
|
273 | "der c (CHAR d) = (if c = d then ONE else ZERO)" |
|
274 | "der c (ALT r1 r2) = ALT (der c r1) (der c r2)" |
|
275 | "der c (SEQ r1 r2) = |
|
276 (if nullable r1 |
|
277 then ALT (SEQ (der c r1) r2) (der c r2) |
|
278 else SEQ (der c r1) r2)" |
|
279 | "der c (STAR r) = SEQ (der c r) (STAR r)" |
|
280 | "der c (UPNTIMES r n) = (if n = 0 then ZERO else SEQ (der c r) (UPNTIMES r (n - 1)))" |
|
281 | "der c (NTIMES r n) = (if n = 0 then ZERO else SEQ (der c r) (NTIMES r (n - 1)))" |
|
282 | "der c (FROMNTIMES r n) = |
|
283 (if n = 0 |
|
284 then SEQ (der c r) (STAR r) |
|
285 else SEQ (der c r) (FROMNTIMES r (n - 1)))" |
|
286 | "der c (NMTIMES r n m) = |
|
287 (if m < n then ZERO |
|
288 else (if n = 0 then (if m = 0 then ZERO else |
|
289 SEQ (der c r) (UPNTIMES r (m - 1))) else |
|
290 SEQ (der c r) (NMTIMES r (n - 1) (m - 1))))" |
|
291 | "der c (NOT r) = NOT (der c r)" |
|
292 |
|
293 lemma |
|
294 "L(der c (UPNTIMES r m)) = |
|
295 L(if (m = 0) then ZERO else ALT ONE (SEQ(der c r) (UPNTIMES r (m - 1))))" |
|
296 apply(case_tac m) |
|
297 apply(simp) |
|
298 apply(simp del: der.simps) |
|
299 apply(simp only: der.simps) |
|
300 apply(simp add: Sequ_def) |
|
301 apply(auto) |
|
302 defer |
|
303 apply blast |
|
304 oops |
|
305 |
|
306 |
|
307 |
|
308 lemma |
|
309 assumes "der c r = ONE \<or> der c r = ZERO" |
|
310 shows "L (der c (NOT r)) \<noteq> L(if (der c r = ZERO) then ONE else |
|
311 if (der c r = ONE) then ZERO |
|
312 else NOT(der c r))" |
|
313 using assms |
|
314 apply(simp) |
|
315 apply(auto) |
|
316 done |
|
317 |
|
318 lemma |
|
319 "L (der c (NOT r)) = L(if (der c r = ZERO) then ONE else |
|
320 if (der c r = ONE) then ZERO |
|
321 else NOT(der c r))" |
|
322 apply(simp) |
|
323 apply(auto) |
|
324 oops |
|
325 |
|
326 lemma pow_add: |
|
327 assumes "s1 \<in> A \<up> n" "s2 \<in> A \<up> m" |
|
328 shows "s1 @ s2 \<in> A \<up> (n + m)" |
|
329 using assms |
|
330 apply(induct n arbitrary: m s1 s2) |
|
331 apply(auto simp add: Sequ_def) |
|
332 by blast |
|
333 |
|
334 lemma pow_add2: |
|
335 assumes "x \<in> A \<up> (m + n)" |
|
336 shows "x \<in> A \<up> m ;; A \<up> n" |
|
337 using assms |
|
338 apply(induct m arbitrary: n x) |
|
339 apply(auto simp add: Sequ_def) |
|
340 by (metis append.assoc) |
|
341 |
|
342 |
|
343 |
|
344 lemma |
|
345 "L(FROMNTIMES r n) = L(SEQ (NTIMES r n) (STAR r))" |
|
346 apply(auto simp add: Sequ_def) |
|
347 defer |
|
348 apply(subgoal_tac "\<exists>m. s2 \<in> (L r) \<up> m") |
|
349 prefer 2 |
|
350 apply (simp add: Star_Pow) |
|
351 apply(auto) |
|
352 apply(rule_tac x="n + m" in bexI) |
|
353 apply (simp add: pow_add) |
|
354 apply simp |
|
355 apply(subgoal_tac "\<exists>m. m + n = xa") |
|
356 apply(auto) |
|
357 prefer 2 |
|
358 using le_add_diff_inverse2 apply auto[1] |
|
359 by (smt Pow_Star Sequ_def add.commute mem_Collect_eq pow_add2) |
|
360 |
|
361 lemma |
|
362 "L (der c (FROMNTIMES r n)) = |
|
363 L (SEQ (der c r) (FROMNTIMES r (n - 1)))" |
|
364 apply(auto simp add: Sequ_def) |
|
365 using Star_Pow apply blast |
|
366 using Pow_Star by blast |
|
367 |
|
368 lemma |
|
369 "L (der c (UPNTIMES r n)) = |
|
370 L(if n = 0 then ZERO else |
|
371 ALT (der c r) (SEQ (der c r) (UPNTIMES r (n - 1))))" |
|
372 apply(auto simp add: Sequ_def) |
|
373 using SpecExt.Pow_empty by blast |
|
374 |
|
375 abbreviation "FROM \<equiv> FROMNTIMES" |
|
376 |
|
377 lemma |
|
378 shows "L (der c (FROM r n)) = |
|
379 L (if n <= 0 then SEQ (der c r) (ALT ONE (FROM r 0)) |
|
380 else SEQ (der c r) (ALT ZERO (FROM r (n -1))))" |
|
381 apply(auto simp add: Sequ_def) |
|
382 oops |
|
383 |
|
384 |
|
385 fun |
|
386 ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp" |
|
387 where |
|
388 "ders [] r = r" |
|
389 | "ders (c # s) r = ders s (der c r)" |
|
390 |
|
391 |
|
392 lemma nullable_correctness: |
|
393 shows "nullable r \<longleftrightarrow> [] \<in> (L r)" |
|
394 by(induct r) (auto simp add: Sequ_def) |
|
395 |
|
396 |
|
397 lemma der_correctness: |
|
398 shows "L (der c r) = Der c (L r)" |
|
399 apply(induct r) |
|
400 apply(simp add: nullable_correctness del: Der_UNION) |
|
401 apply(simp add: nullable_correctness del: Der_UNION) |
|
402 apply(simp add: nullable_correctness del: Der_UNION) |
|
403 apply(simp add: nullable_correctness del: Der_UNION) |
|
404 apply(simp add: nullable_correctness del: Der_UNION) |
|
405 apply(simp add: nullable_correctness del: Der_UNION) |
|
406 prefer 2 |
|
407 apply(simp only: der.simps) |
|
408 apply(case_tac "x2 = 0") |
|
409 apply(simp) |
|
410 apply(simp del: Der_Sequ L.simps) |
|
411 apply(subst L.simps) |
|
412 apply(subst (2) L.simps) |
|
413 thm Der_UNION |
|
414 |
|
415 apply(simp add: nullable_correctness del: Der_UNION) |
|
416 apply(simp add: nullable_correctness del: Der_UNION) |
|
417 apply(rule impI) |
|
418 apply(subst Sequ_Union_in) |
|
419 apply(subst Der_Pow_Sequ[symmetric]) |
|
420 apply(subst Pow.simps[symmetric]) |
|
421 apply(subst Der_UNION[symmetric]) |
|
422 apply(subst Pow_Sequ_Un) |
|
423 apply(simp) |
|
424 apply(simp only: Der_union Der_empty) |
|
425 apply(simp) |
|
426 (* FROMNTIMES *) |
|
427 apply(simp add: nullable_correctness del: Der_UNION) |
|
428 apply(rule conjI) |
|
429 prefer 2 |
|
430 apply(subst Sequ_Union_in) |
|
431 apply(subst Der_Pow_Sequ[symmetric]) |
|
432 apply(subst Pow.simps[symmetric]) |
|
433 apply(case_tac x2) |
|
434 prefer 2 |
|
435 apply(subst Pow_Sequ_Un2) |
|
436 apply(simp) |
|
437 apply(simp) |
|
438 apply(auto simp add: Sequ_def Der_def)[1] |
|
439 apply(auto simp add: Sequ_def split: if_splits)[1] |
|
440 using Star_Pow apply fastforce |
|
441 using Pow_Star apply blast |
|
442 (* NMTIMES *) |
|
443 apply(simp add: nullable_correctness del: Der_UNION) |
|
444 apply(rule impI) |
|
445 apply(rule conjI) |
|
446 apply(rule impI) |
|
447 apply(subst Sequ_Union_in) |
|
448 apply(subst Der_Pow_Sequ[symmetric]) |
|
449 apply(subst Pow.simps[symmetric]) |
|
450 apply(subst Der_UNION[symmetric]) |
|
451 apply(case_tac x3a) |
|
452 apply(simp) |
|
453 apply(clarify) |
|
454 apply(auto simp add: Sequ_def Der_def Cons_eq_append_conv)[1] |
|
455 apply(rule_tac x="Suc xa" in bexI) |
|
456 apply(auto simp add: Sequ_def)[2] |
|
457 apply (metis append_Cons) |
|
458 apply (metis (no_types, hide_lams) Pow_decomp atMost_iff diff_Suc_eq_diff_pred diff_is_0_eq) |
|
459 apply(rule impI)+ |
|
460 apply(subst Sequ_Union_in) |
|
461 apply(subst Der_Pow_Sequ[symmetric]) |
|
462 apply(subst Pow.simps[symmetric]) |
|
463 apply(subst Der_UNION[symmetric]) |
|
464 apply(case_tac x2) |
|
465 apply(simp) |
|
466 apply(simp del: Pow.simps) |
|
467 apply(auto simp add: Sequ_def Der_def) |
|
468 apply (metis One_nat_def Suc_le_D Suc_le_mono atLeastAtMost_iff diff_Suc_1 not_le) |
|
469 by fastforce |
|
470 |
|
471 |
|
472 |
|
473 lemma ders_correctness: |
|
474 shows "L (ders s r) = Ders s (L r)" |
|
475 by (induct s arbitrary: r) |
|
476 (simp_all add: Ders_def der_correctness Der_def) |
|
477 |
|
478 |
|
479 section {* Values *} |
|
480 |
|
481 datatype val = |
|
482 Void |
|
483 | Char char |
|
484 | Seq val val |
|
485 | Right val |
|
486 | Left val |
|
487 | Stars "val list" |
|
488 |
|
489 |
|
490 section {* The string behind a value *} |
|
491 |
|
492 fun |
|
493 flat :: "val \<Rightarrow> string" |
|
494 where |
|
495 "flat (Void) = []" |
|
496 | "flat (Char c) = [c]" |
|
497 | "flat (Left v) = flat v" |
|
498 | "flat (Right v) = flat v" |
|
499 | "flat (Seq v1 v2) = (flat v1) @ (flat v2)" |
|
500 | "flat (Stars []) = []" |
|
501 | "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" |
|
502 |
|
503 abbreviation |
|
504 "flats vs \<equiv> concat (map flat vs)" |
|
505 |
|
506 lemma flat_Stars [simp]: |
|
507 "flat (Stars vs) = flats vs" |
|
508 by (induct vs) (auto) |
|
509 |
|
510 lemma Star_concat: |
|
511 assumes "\<forall>s \<in> set ss. s \<in> A" |
|
512 shows "concat ss \<in> A\<star>" |
|
513 using assms by (induct ss) (auto) |
|
514 |
|
515 lemma Star_cstring: |
|
516 assumes "s \<in> A\<star>" |
|
517 shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])" |
|
518 using assms |
|
519 apply(induct rule: Star.induct) |
|
520 apply(auto)[1] |
|
521 apply(rule_tac x="[]" in exI) |
|
522 apply(simp) |
|
523 apply(erule exE) |
|
524 apply(clarify) |
|
525 apply(case_tac "s1 = []") |
|
526 apply(rule_tac x="ss" in exI) |
|
527 apply(simp) |
|
528 apply(rule_tac x="s1#ss" in exI) |
|
529 apply(simp) |
|
530 done |
|
531 |
|
532 lemma Aux: |
|
533 assumes "\<forall>s\<in>set ss. s = []" |
|
534 shows "concat ss = []" |
|
535 using assms |
|
536 by (induct ss) (auto) |
|
537 |
|
538 lemma Pow_cstring_nonempty: |
|
539 assumes "s \<in> A \<up> n" |
|
540 shows "\<exists>ss. concat ss = s \<and> length ss \<le> n \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])" |
|
541 using assms |
|
542 apply(induct n arbitrary: s) |
|
543 apply(auto) |
|
544 apply(simp add: Sequ_def) |
|
545 apply(erule exE)+ |
|
546 apply(clarify) |
|
547 apply(drule_tac x="s2" in meta_spec) |
|
548 apply(simp) |
|
549 apply(clarify) |
|
550 apply(case_tac "s1 = []") |
|
551 apply(simp) |
|
552 apply(rule_tac x="ss" in exI) |
|
553 apply(simp) |
|
554 apply(rule_tac x="s1 # ss" in exI) |
|
555 apply(simp) |
|
556 done |
|
557 |
|
558 lemma Pow_cstring: |
|
559 assumes "s \<in> A \<up> n" |
|
560 shows "\<exists>ss1 ss2. concat (ss1 @ ss2) = s \<and> length (ss1 @ ss2) = n \<and> |
|
561 (\<forall>s \<in> set ss1. s \<in> A \<and> s \<noteq> []) \<and> (\<forall>s \<in> set ss2. s \<in> A \<and> s = [])" |
|
562 using assms |
|
563 apply(induct n arbitrary: s) |
|
564 apply(auto)[1] |
|
565 apply(simp only: Pow_Suc_rev) |
|
566 apply(simp add: Sequ_def) |
|
567 apply(erule exE)+ |
|
568 apply(clarify) |
|
569 apply(drule_tac x="s1" in meta_spec) |
|
570 apply(simp) |
|
571 apply(erule exE)+ |
|
572 apply(clarify) |
|
573 apply(case_tac "s2 = []") |
|
574 apply(simp) |
|
575 apply(rule_tac x="ss1" in exI) |
|
576 apply(rule_tac x="s2#ss2" in exI) |
|
577 apply(simp) |
|
578 apply(rule_tac x="ss1 @ [s2]" in exI) |
|
579 apply(rule_tac x="ss2" in exI) |
|
580 apply(simp) |
|
581 apply(subst Aux) |
|
582 apply(auto)[1] |
|
583 apply(subst Aux) |
|
584 apply(auto)[1] |
|
585 apply(simp) |
|
586 done |
|
587 |
|
588 |
|
589 section {* Lexical Values *} |
|
590 |
|
591 |
|
592 |
|
593 inductive |
|
594 Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<Turnstile> _ : _" [100, 100] 100) |
|
595 where |
|
596 "\<lbrakk>\<Turnstile> v1 : r1; \<Turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<Turnstile> Seq v1 v2 : SEQ r1 r2" |
|
597 | "\<Turnstile> v1 : r1 \<Longrightarrow> \<Turnstile> Left v1 : ALT r1 r2" |
|
598 | "\<Turnstile> v2 : r2 \<Longrightarrow> \<Turnstile> Right v2 : ALT r1 r2" |
|
599 | "\<Turnstile> Void : ONE" |
|
600 | "\<Turnstile> Char c : CHAR c" |
|
601 | "\<lbrakk>\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> []\<rbrakk> \<Longrightarrow> \<Turnstile> Stars vs : STAR r" |
|
602 | "\<lbrakk>\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> []; length vs \<le> n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars vs : UPNTIMES r n" |
|
603 | "\<lbrakk>\<forall>v \<in> set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []; |
|
604 \<forall>v \<in> set vs2. \<Turnstile> v : r \<and> flat v = []; |
|
605 length (vs1 @ vs2) = n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (vs1 @ vs2) : NTIMES r n" |
|
606 | "\<lbrakk>\<forall>v \<in> set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []; |
|
607 \<forall>v \<in> set vs2. \<Turnstile> v : r \<and> flat v = []; |
|
608 length (vs1 @ vs2) = n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (vs1 @ vs2) : FROMNTIMES r n" |
|
609 | "\<lbrakk>\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> []; length vs > n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars vs : FROMNTIMES r n" |
|
610 | "\<lbrakk>\<forall>v \<in> set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []; |
|
611 \<forall>v \<in> set vs2. \<Turnstile> v : r \<and> flat v = []; |
|
612 length (vs1 @ vs2) = n; length (vs1 @ vs2) \<le> m\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (vs1 @ vs2) : NMTIMES r n m" |
|
613 | "\<lbrakk>\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> []; |
|
614 length vs > n; length vs \<le> m\<rbrakk> \<Longrightarrow> \<Turnstile> Stars vs : NMTIMES r n m" |
|
615 |
|
616 |
|
617 |
|
618 |
|
619 |
|
620 inductive_cases Prf_elims: |
|
621 "\<Turnstile> v : ZERO" |
|
622 "\<Turnstile> v : SEQ r1 r2" |
|
623 "\<Turnstile> v : ALT r1 r2" |
|
624 "\<Turnstile> v : ONE" |
|
625 "\<Turnstile> v : CHAR c" |
|
626 "\<Turnstile> vs : STAR r" |
|
627 "\<Turnstile> vs : UPNTIMES r n" |
|
628 "\<Turnstile> vs : NTIMES r n" |
|
629 "\<Turnstile> vs : FROMNTIMES r n" |
|
630 "\<Turnstile> vs : NMTIMES r n m" |
|
631 |
|
632 lemma Prf_Stars_appendE: |
|
633 assumes "\<Turnstile> Stars (vs1 @ vs2) : STAR r" |
|
634 shows "\<Turnstile> Stars vs1 : STAR r \<and> \<Turnstile> Stars vs2 : STAR r" |
|
635 using assms |
|
636 by (auto intro: Prf.intros elim!: Prf_elims) |
|
637 |
|
638 |
|
639 |
|
640 lemma flats_empty: |
|
641 assumes "(\<forall>v\<in>set vs. flat v = [])" |
|
642 shows "flats vs = []" |
|
643 using assms |
|
644 by(induct vs) (simp_all) |
|
645 |
|
646 lemma Star_cval: |
|
647 assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r" |
|
648 shows "\<exists>vs. flats vs = concat ss \<and> (\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> [])" |
|
649 using assms |
|
650 apply(induct ss) |
|
651 apply(auto) |
|
652 apply(rule_tac x="[]" in exI) |
|
653 apply(simp) |
|
654 apply(case_tac "flat v = []") |
|
655 apply(rule_tac x="vs" in exI) |
|
656 apply(simp) |
|
657 apply(rule_tac x="v#vs" in exI) |
|
658 apply(simp) |
|
659 done |
|
660 |
|
661 |
|
662 lemma flats_cval: |
|
663 assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r" |
|
664 shows "\<exists>vs1 vs2. flats (vs1 @ vs2) = concat ss \<and> length (vs1 @ vs2) = length ss \<and> |
|
665 (\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []) \<and> |
|
666 (\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = [])" |
|
667 using assms |
|
668 apply(induct ss rule: rev_induct) |
|
669 apply(rule_tac x="[]" in exI)+ |
|
670 apply(simp) |
|
671 apply(simp) |
|
672 apply(clarify) |
|
673 apply(case_tac "flat v = []") |
|
674 apply(rule_tac x="vs1" in exI) |
|
675 apply(rule_tac x="v#vs2" in exI) |
|
676 apply(simp) |
|
677 apply(rule_tac x="vs1 @ [v]" in exI) |
|
678 apply(rule_tac x="vs2" in exI) |
|
679 apply(simp) |
|
680 apply(subst (asm) (2) flats_empty) |
|
681 apply(simp) |
|
682 apply(simp) |
|
683 done |
|
684 |
|
685 lemma flats_cval_nonempty: |
|
686 assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r" |
|
687 shows "\<exists>vs. flats vs = concat ss \<and> length vs \<le> length ss \<and> |
|
688 (\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> [])" |
|
689 using assms |
|
690 apply(induct ss) |
|
691 apply(rule_tac x="[]" in exI) |
|
692 apply(simp) |
|
693 apply(simp) |
|
694 apply(clarify) |
|
695 apply(case_tac "flat v = []") |
|
696 apply(rule_tac x="vs" in exI) |
|
697 apply(simp) |
|
698 apply(rule_tac x="v # vs" in exI) |
|
699 apply(simp) |
|
700 done |
|
701 |
|
702 lemma Pow_flats: |
|
703 assumes "\<forall>v \<in> set vs. flat v \<in> A" |
|
704 shows "flats vs \<in> A \<up> length vs" |
|
705 using assms |
|
706 by(induct vs)(auto simp add: Sequ_def) |
|
707 |
|
708 lemma Pow_flats_appends: |
|
709 assumes "\<forall>v \<in> set vs1. flat v \<in> A" "\<forall>v \<in> set vs2. flat v \<in> A" |
|
710 shows "flats vs1 @ flats vs2 \<in> A \<up> (length vs1 + length vs2)" |
|
711 using assms |
|
712 apply(induct vs1) |
|
713 apply(auto simp add: Sequ_def Pow_flats) |
|
714 done |
|
715 |
|
716 lemma L_flat_Prf1: |
|
717 assumes "\<Turnstile> v : r" |
|
718 shows "flat v \<in> L r" |
|
719 using assms |
|
720 apply(induct) |
|
721 apply(auto simp add: Sequ_def Star_concat Pow_flats) |
|
722 apply(meson Pow_flats atMost_iff) |
|
723 using Pow_flats_appends apply blast |
|
724 using Pow_flats_appends apply blast |
|
725 apply (meson Pow_flats atLeast_iff less_imp_le) |
|
726 apply(rule_tac x="length vs1 + length vs2" in bexI) |
|
727 apply(meson Pow_flats_appends atLeastAtMost_iff) |
|
728 apply(simp) |
|
729 apply(meson Pow_flats atLeastAtMost_iff less_or_eq_imp_le) |
|
730 done |
|
731 |
|
732 lemma L_flat_Prf2: |
|
733 assumes "s \<in> L r" |
|
734 shows "\<exists>v. \<Turnstile> v : r \<and> flat v = s" |
|
735 using assms |
|
736 proof(induct r arbitrary: s) |
|
737 case (STAR r s) |
|
738 have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact |
|
739 have "s \<in> L (STAR r)" by fact |
|
740 then obtain ss where "concat ss = s" "\<forall>s \<in> set ss. s \<in> L r \<and> s \<noteq> []" |
|
741 using Star_cstring by auto |
|
742 then obtain vs where "flats vs = s" "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> []" |
|
743 using IH Star_cval by metis |
|
744 then show "\<exists>v. \<Turnstile> v : STAR r \<and> flat v = s" |
|
745 using Prf.intros(6) flat_Stars by blast |
|
746 next |
|
747 case (SEQ r1 r2 s) |
|
748 then show "\<exists>v. \<Turnstile> v : SEQ r1 r2 \<and> flat v = s" |
|
749 unfolding Sequ_def L.simps by (fastforce intro: Prf.intros) |
|
750 next |
|
751 case (ALT r1 r2 s) |
|
752 then show "\<exists>v. \<Turnstile> v : ALT r1 r2 \<and> flat v = s" |
|
753 unfolding L.simps by (fastforce intro: Prf.intros) |
|
754 next |
|
755 case (NTIMES r n) |
|
756 have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact |
|
757 have "s \<in> L (NTIMES r n)" by fact |
|
758 then obtain ss1 ss2 where "concat (ss1 @ ss2) = s" "length (ss1 @ ss2) = n" |
|
759 "\<forall>s \<in> set ss1. s \<in> L r \<and> s \<noteq> []" "\<forall>s \<in> set ss2. s \<in> L r \<and> s = []" |
|
760 using Pow_cstring by force |
|
761 then obtain vs1 vs2 where "flats (vs1 @ vs2) = s" "length (vs1 @ vs2) = n" |
|
762 "\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []" "\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = []" |
|
763 using IH flats_cval |
|
764 apply - |
|
765 apply(drule_tac x="ss1 @ ss2" in meta_spec) |
|
766 apply(drule_tac x="r" in meta_spec) |
|
767 apply(drule meta_mp) |
|
768 apply(simp) |
|
769 apply (metis Un_iff) |
|
770 apply(clarify) |
|
771 apply(drule_tac x="vs1" in meta_spec) |
|
772 apply(drule_tac x="vs2" in meta_spec) |
|
773 apply(simp) |
|
774 done |
|
775 then show "\<exists>v. \<Turnstile> v : NTIMES r n \<and> flat v = s" |
|
776 using Prf.intros(8) flat_Stars by blast |
|
777 next |
|
778 case (FROMNTIMES r n) |
|
779 have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact |
|
780 have "s \<in> L (FROMNTIMES r n)" by fact |
|
781 then obtain ss1 ss2 k where "concat (ss1 @ ss2) = s" "length (ss1 @ ss2) = k" "n \<le> k" |
|
782 "\<forall>s \<in> set ss1. s \<in> L r \<and> s \<noteq> []" "\<forall>s \<in> set ss2. s \<in> L r \<and> s = []" |
|
783 using Pow_cstring by force |
|
784 then obtain vs1 vs2 where "flats (vs1 @ vs2) = s" "length (vs1 @ vs2) = k" "n \<le> k" |
|
785 "\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []" "\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = []" |
|
786 using IH flats_cval |
|
787 apply - |
|
788 apply(drule_tac x="ss1 @ ss2" in meta_spec) |
|
789 apply(drule_tac x="r" in meta_spec) |
|
790 apply(drule meta_mp) |
|
791 apply(simp) |
|
792 apply (metis Un_iff) |
|
793 apply(clarify) |
|
794 apply(drule_tac x="vs1" in meta_spec) |
|
795 apply(drule_tac x="vs2" in meta_spec) |
|
796 apply(simp) |
|
797 done |
|
798 then show "\<exists>v. \<Turnstile> v : FROMNTIMES r n \<and> flat v = s" |
|
799 apply(case_tac "length vs1 \<le> n") |
|
800 apply(rule_tac x="Stars (vs1 @ take (n - length vs1) vs2)" in exI) |
|
801 apply(simp) |
|
802 apply(subgoal_tac "flats (take (n - length vs1) vs2) = []") |
|
803 prefer 2 |
|
804 apply (meson flats_empty in_set_takeD) |
|
805 apply(clarify) |
|
806 apply(rule conjI) |
|
807 apply(rule Prf.intros) |
|
808 apply(simp) |
|
809 apply (meson in_set_takeD) |
|
810 apply(simp) |
|
811 apply(simp) |
|
812 apply (simp add: flats_empty) |
|
813 apply(rule_tac x="Stars vs1" in exI) |
|
814 apply(simp) |
|
815 apply(rule conjI) |
|
816 apply(rule Prf.intros(10)) |
|
817 apply(auto) |
|
818 done |
|
819 next |
|
820 case (NMTIMES r n m) |
|
821 have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact |
|
822 have "s \<in> L (NMTIMES r n m)" by fact |
|
823 then obtain ss1 ss2 k where "concat (ss1 @ ss2) = s" "length (ss1 @ ss2) = k" "n \<le> k" "k \<le> m" |
|
824 "\<forall>s \<in> set ss1. s \<in> L r \<and> s \<noteq> []" "\<forall>s \<in> set ss2. s \<in> L r \<and> s = []" |
|
825 using Pow_cstring by (auto, blast) |
|
826 then obtain vs1 vs2 where "flats (vs1 @ vs2) = s" "length (vs1 @ vs2) = k" "n \<le> k" "k \<le> m" |
|
827 "\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []" "\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = []" |
|
828 using IH flats_cval |
|
829 apply - |
|
830 apply(drule_tac x="ss1 @ ss2" in meta_spec) |
|
831 apply(drule_tac x="r" in meta_spec) |
|
832 apply(drule meta_mp) |
|
833 apply(simp) |
|
834 apply (metis Un_iff) |
|
835 apply(clarify) |
|
836 apply(drule_tac x="vs1" in meta_spec) |
|
837 apply(drule_tac x="vs2" in meta_spec) |
|
838 apply(simp) |
|
839 done |
|
840 then show "\<exists>v. \<Turnstile> v : NMTIMES r n m \<and> flat v = s" |
|
841 apply(case_tac "length vs1 \<le> n") |
|
842 apply(rule_tac x="Stars (vs1 @ take (n - length vs1) vs2)" in exI) |
|
843 apply(simp) |
|
844 apply(subgoal_tac "flats (take (n - length vs1) vs2) = []") |
|
845 prefer 2 |
|
846 apply (meson flats_empty in_set_takeD) |
|
847 apply(clarify) |
|
848 apply(rule conjI) |
|
849 apply(rule Prf.intros) |
|
850 apply(simp) |
|
851 apply (meson in_set_takeD) |
|
852 apply(simp) |
|
853 apply(simp) |
|
854 apply (simp add: flats_empty) |
|
855 apply(rule_tac x="Stars vs1" in exI) |
|
856 apply(simp) |
|
857 apply(rule conjI) |
|
858 apply(rule Prf.intros) |
|
859 apply(auto) |
|
860 done |
|
861 next |
|
862 case (UPNTIMES r n s) |
|
863 have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact |
|
864 have "s \<in> L (UPNTIMES r n)" by fact |
|
865 then obtain ss where "concat ss = s" "\<forall>s \<in> set ss. s \<in> L r \<and> s \<noteq> []" "length ss \<le> n" |
|
866 using Pow_cstring_nonempty by force |
|
867 then obtain vs where "flats vs = s" "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> []" "length vs \<le> n" |
|
868 using IH flats_cval_nonempty by (smt order.trans) |
|
869 then show "\<exists>v. \<Turnstile> v : UPNTIMES r n \<and> flat v = s" |
|
870 using Prf.intros(7) flat_Stars by blast |
|
871 qed (auto intro: Prf.intros) |
|
872 |
|
873 |
|
874 lemma L_flat_Prf: |
|
875 shows "L(r) = {flat v | v. \<Turnstile> v : r}" |
|
876 using L_flat_Prf1 L_flat_Prf2 by blast |
|
877 |
|
878 thm Prf.intros |
|
879 thm Prf.cases |
|
880 |
|
881 lemma |
|
882 assumes "\<Turnstile> v : (STAR r)" |
|
883 shows "\<Turnstile> v : (FROMNTIMES r 0)" |
|
884 using assms |
|
885 apply(erule_tac Prf.cases) |
|
886 apply(simp_all) |
|
887 apply(case_tac vs) |
|
888 apply(auto) |
|
889 apply(subst append_Nil[symmetric]) |
|
890 apply(rule Prf.intros) |
|
891 apply(auto) |
|
892 apply(simp add: Prf.intros) |
|
893 done |
|
894 |
|
895 lemma |
|
896 assumes "\<Turnstile> v : (FROMNTIMES r 0)" |
|
897 shows "\<Turnstile> v : (STAR r)" |
|
898 using assms |
|
899 apply(erule_tac Prf.cases) |
|
900 apply(simp_all) |
|
901 apply(rule Prf.intros) |
|
902 apply(simp) |
|
903 apply(rule Prf.intros) |
|
904 apply(simp) |
|
905 done |
|
906 |
|
907 section {* Sets of Lexical Values *} |
|
908 |
|
909 text {* |
|
910 Shows that lexical values are finite for a given regex and string. |
|
911 *} |
|
912 |
|
913 definition |
|
914 LV :: "rexp \<Rightarrow> string \<Rightarrow> val set" |
|
915 where "LV r s \<equiv> {v. \<Turnstile> v : r \<and> flat v = s}" |
|
916 |
|
917 lemma LV_simps: |
|
918 shows "LV ZERO s = {}" |
|
919 and "LV ONE s = (if s = [] then {Void} else {})" |
|
920 and "LV (CHAR c) s = (if s = [c] then {Char c} else {})" |
|
921 and "LV (ALT r1 r2) s = Left ` LV r1 s \<union> Right ` LV r2 s" |
|
922 unfolding LV_def |
|
923 apply(auto intro: Prf.intros elim: Prf.cases) |
|
924 done |
|
925 |
|
926 abbreviation |
|
927 "Prefixes s \<equiv> {s'. prefix s' s}" |
|
928 |
|
929 abbreviation |
|
930 "Suffixes s \<equiv> {s'. suffix s' s}" |
|
931 |
|
932 abbreviation |
|
933 "SSuffixes s \<equiv> {s'. strict_suffix s' s}" |
|
934 |
|
935 lemma Suffixes_cons [simp]: |
|
936 shows "Suffixes (c # s) = Suffixes s \<union> {c # s}" |
|
937 by (auto simp add: suffix_def Cons_eq_append_conv) |
|
938 |
|
939 |
|
940 lemma finite_Suffixes: |
|
941 shows "finite (Suffixes s)" |
|
942 by (induct s) (simp_all) |
|
943 |
|
944 lemma finite_SSuffixes: |
|
945 shows "finite (SSuffixes s)" |
|
946 proof - |
|
947 have "SSuffixes s \<subseteq> Suffixes s" |
|
948 unfolding suffix_def strict_suffix_def by auto |
|
949 then show "finite (SSuffixes s)" |
|
950 using finite_Suffixes finite_subset by blast |
|
951 qed |
|
952 |
|
953 lemma finite_Prefixes: |
|
954 shows "finite (Prefixes s)" |
|
955 proof - |
|
956 have "finite (Suffixes (rev s))" |
|
957 by (rule finite_Suffixes) |
|
958 then have "finite (rev ` Suffixes (rev s))" by simp |
|
959 moreover |
|
960 have "rev ` (Suffixes (rev s)) = Prefixes s" |
|
961 unfolding suffix_def prefix_def image_def |
|
962 by (auto)(metis rev_append rev_rev_ident)+ |
|
963 ultimately show "finite (Prefixes s)" by simp |
|
964 qed |
|
965 |
|
966 definition |
|
967 "Stars_Cons V Vs \<equiv> {Stars (v # vs) | v vs. v \<in> V \<and> Stars vs \<in> Vs}" |
|
968 |
|
969 definition |
|
970 "Stars_Append Vs1 Vs2 \<equiv> {Stars (vs1 @ vs2) | vs1 vs2. Stars vs1 \<in> Vs1 \<and> Stars vs2 \<in> Vs2}" |
|
971 |
|
972 fun Stars_Pow :: "val set \<Rightarrow> nat \<Rightarrow> val set" |
|
973 where |
|
974 "Stars_Pow Vs 0 = {Stars []}" |
|
975 | "Stars_Pow Vs (Suc n) = Stars_Cons Vs (Stars_Pow Vs n)" |
|
976 |
|
977 lemma finite_Stars_Cons: |
|
978 assumes "finite V" "finite Vs" |
|
979 shows "finite (Stars_Cons V Vs)" |
|
980 using assms |
|
981 proof - |
|
982 from assms(2) have "finite (Stars -` Vs)" |
|
983 by(simp add: finite_vimageI inj_on_def) |
|
984 with assms(1) have "finite (V \<times> (Stars -` Vs))" |
|
985 by(simp) |
|
986 then have "finite ((\<lambda>(v, vs). Stars (v # vs)) ` (V \<times> (Stars -` Vs)))" |
|
987 by simp |
|
988 moreover have "Stars_Cons V Vs = (\<lambda>(v, vs). Stars (v # vs)) ` (V \<times> (Stars -` Vs))" |
|
989 unfolding Stars_Cons_def by auto |
|
990 ultimately show "finite (Stars_Cons V Vs)" |
|
991 by simp |
|
992 qed |
|
993 |
|
994 lemma finite_Stars_Append: |
|
995 assumes "finite Vs1" "finite Vs2" |
|
996 shows "finite (Stars_Append Vs1 Vs2)" |
|
997 using assms |
|
998 proof - |
|
999 define UVs1 where "UVs1 \<equiv> Stars -` Vs1" |
|
1000 define UVs2 where "UVs2 \<equiv> Stars -` Vs2" |
|
1001 from assms have "finite UVs1" "finite UVs2" |
|
1002 unfolding UVs1_def UVs2_def |
|
1003 by(simp_all add: finite_vimageI inj_on_def) |
|
1004 then have "finite ((\<lambda>(vs1, vs2). Stars (vs1 @ vs2)) ` (UVs1 \<times> UVs2))" |
|
1005 by simp |
|
1006 moreover |
|
1007 have "Stars_Append Vs1 Vs2 = (\<lambda>(vs1, vs2). Stars (vs1 @ vs2)) ` (UVs1 \<times> UVs2)" |
|
1008 unfolding Stars_Append_def UVs1_def UVs2_def by auto |
|
1009 ultimately show "finite (Stars_Append Vs1 Vs2)" |
|
1010 by simp |
|
1011 qed |
|
1012 |
|
1013 lemma finite_Stars_Pow: |
|
1014 assumes "finite Vs" |
|
1015 shows "finite (Stars_Pow Vs n)" |
|
1016 by (induct n) (simp_all add: finite_Stars_Cons assms) |
|
1017 |
|
1018 lemma LV_STAR_finite: |
|
1019 assumes "\<forall>s. finite (LV r s)" |
|
1020 shows "finite (LV (STAR r) s)" |
|
1021 proof(induct s rule: length_induct) |
|
1022 fix s::"char list" |
|
1023 assume "\<forall>s'. length s' < length s \<longrightarrow> finite (LV (STAR r) s')" |
|
1024 then have IH: "\<forall>s' \<in> SSuffixes s. finite (LV (STAR r) s')" |
|
1025 apply(auto simp add: strict_suffix_def suffix_def) |
|
1026 by force |
|
1027 define f where "f \<equiv> \<lambda>(v, vs). Stars (v # vs)" |
|
1028 define S1 where "S1 \<equiv> \<Union>s' \<in> Prefixes s. LV r s'" |
|
1029 define S2 where "S2 \<equiv> \<Union>s2 \<in> SSuffixes s. LV (STAR r) s2" |
|
1030 have "finite S1" using assms |
|
1031 unfolding S1_def by (simp_all add: finite_Prefixes) |
|
1032 moreover |
|
1033 with IH have "finite S2" unfolding S2_def |
|
1034 by (auto simp add: finite_SSuffixes) |
|
1035 ultimately |
|
1036 have "finite ({Stars []} \<union> Stars_Cons S1 S2)" |
|
1037 by (simp add: finite_Stars_Cons) |
|
1038 moreover |
|
1039 have "LV (STAR r) s \<subseteq> {Stars []} \<union> (Stars_Cons S1 S2)" |
|
1040 unfolding S1_def S2_def f_def LV_def Stars_Cons_def |
|
1041 unfolding prefix_def strict_suffix_def |
|
1042 unfolding image_def |
|
1043 apply(auto) |
|
1044 apply(case_tac x) |
|
1045 apply(auto elim: Prf_elims) |
|
1046 apply(erule Prf_elims) |
|
1047 apply(auto) |
|
1048 apply(case_tac vs) |
|
1049 apply(auto intro: Prf.intros) |
|
1050 apply(rule exI) |
|
1051 apply(rule conjI) |
|
1052 apply(rule_tac x="flats list" in exI) |
|
1053 apply(rule conjI) |
|
1054 apply(simp add: suffix_def) |
|
1055 apply(blast) |
|
1056 using Prf.intros(6) flat_Stars by blast |
|
1057 ultimately |
|
1058 show "finite (LV (STAR r) s)" by (simp add: finite_subset) |
|
1059 qed |
|
1060 |
|
1061 lemma LV_UPNTIMES_STAR: |
|
1062 "LV (UPNTIMES r n) s \<subseteq> LV (STAR r) s" |
|
1063 by(auto simp add: LV_def intro: Prf.intros elim: Prf_elims) |
|
1064 |
|
1065 lemma LV_NTIMES_3: |
|
1066 shows "LV (NTIMES r (Suc n)) [] = (\<lambda>(v,vs). Stars (v#vs)) ` (LV r [] \<times> (Stars -` (LV (NTIMES r n) [])))" |
|
1067 unfolding LV_def |
|
1068 apply(auto elim!: Prf_elims simp add: image_def) |
|
1069 apply(case_tac vs1) |
|
1070 apply(auto) |
|
1071 apply(case_tac vs2) |
|
1072 apply(auto) |
|
1073 apply(subst append.simps(1)[symmetric]) |
|
1074 apply(rule Prf.intros) |
|
1075 apply(auto) |
|
1076 apply(subst append.simps(1)[symmetric]) |
|
1077 apply(rule Prf.intros) |
|
1078 apply(auto) |
|
1079 done |
|
1080 |
|
1081 lemma LV_FROMNTIMES_3: |
|
1082 shows "LV (FROMNTIMES r (Suc n)) [] = |
|
1083 (\<lambda>(v,vs). Stars (v#vs)) ` (LV r [] \<times> (Stars -` (LV (FROMNTIMES r n) [])))" |
|
1084 unfolding LV_def |
|
1085 apply(auto elim!: Prf_elims simp add: image_def) |
|
1086 apply(case_tac vs1) |
|
1087 apply(auto) |
|
1088 apply(case_tac vs2) |
|
1089 apply(auto) |
|
1090 apply(subst append.simps(1)[symmetric]) |
|
1091 apply(rule Prf.intros) |
|
1092 apply(auto) |
|
1093 apply (metis le_imp_less_Suc length_greater_0_conv less_antisym list.exhaust list.set_intros(1) not_less_eq zero_le) |
|
1094 prefer 2 |
|
1095 using nth_mem apply blast |
|
1096 apply(case_tac vs1) |
|
1097 apply (smt Groups.add_ac(2) Prf.intros(9) add.right_neutral add_Suc_right append.simps(1) insert_iff length_append list.set(2) list.size(3) list.size(4)) |
|
1098 apply(auto) |
|
1099 done |
|
1100 |
|
1101 lemma LV_NTIMES_4: |
|
1102 "LV (NTIMES r n) [] = Stars_Pow (LV r []) n" |
|
1103 apply(induct n) |
|
1104 apply(simp add: LV_def) |
|
1105 apply(auto elim!: Prf_elims simp add: image_def)[1] |
|
1106 apply(subst append.simps[symmetric]) |
|
1107 apply(rule Prf.intros) |
|
1108 apply(simp_all) |
|
1109 apply(simp add: LV_NTIMES_3 image_def Stars_Cons_def) |
|
1110 apply blast |
|
1111 done |
|
1112 |
|
1113 lemma LV_NTIMES_5: |
|
1114 "LV (NTIMES r n) s \<subseteq> Stars_Append (LV (STAR r) s) (\<Union>i\<le>n. LV (NTIMES r i) [])" |
|
1115 apply(auto simp add: LV_def) |
|
1116 apply(auto elim!: Prf_elims) |
|
1117 apply(auto simp add: Stars_Append_def) |
|
1118 apply(rule_tac x="vs1" in exI) |
|
1119 apply(rule_tac x="vs2" in exI) |
|
1120 apply(auto) |
|
1121 using Prf.intros(6) apply(auto) |
|
1122 apply(rule_tac x="length vs2" in bexI) |
|
1123 thm Prf.intros |
|
1124 apply(subst append.simps(1)[symmetric]) |
|
1125 apply(rule Prf.intros) |
|
1126 apply(auto)[1] |
|
1127 apply(auto)[1] |
|
1128 apply(simp) |
|
1129 apply(simp) |
|
1130 done |
|
1131 |
|
1132 lemma ttty: |
|
1133 "LV (FROMNTIMES r n) [] = Stars_Pow (LV r []) n" |
|
1134 apply(induct n) |
|
1135 apply(simp add: LV_def) |
|
1136 apply(auto elim: Prf_elims simp add: image_def)[1] |
|
1137 prefer 2 |
|
1138 apply(subst append.simps[symmetric]) |
|
1139 apply(rule Prf.intros) |
|
1140 apply(simp_all) |
|
1141 apply(erule Prf_elims) |
|
1142 apply(case_tac vs1) |
|
1143 apply(simp) |
|
1144 apply(simp) |
|
1145 apply(case_tac x) |
|
1146 apply(simp_all) |
|
1147 apply(simp add: LV_FROMNTIMES_3 image_def Stars_Cons_def) |
|
1148 apply blast |
|
1149 done |
|
1150 |
|
1151 lemma LV_FROMNTIMES_5: |
|
1152 "LV (FROMNTIMES r n) s \<subseteq> Stars_Append (LV (STAR r) s) (\<Union>i\<le>n. LV (FROMNTIMES r i) [])" |
|
1153 apply(auto simp add: LV_def) |
|
1154 apply(auto elim!: Prf_elims) |
|
1155 apply(auto simp add: Stars_Append_def) |
|
1156 apply(rule_tac x="vs1" in exI) |
|
1157 apply(rule_tac x="vs2" in exI) |
|
1158 apply(auto) |
|
1159 using Prf.intros(6) apply(auto) |
|
1160 apply(rule_tac x="length vs2" in bexI) |
|
1161 thm Prf.intros |
|
1162 apply(subst append.simps(1)[symmetric]) |
|
1163 apply(rule Prf.intros) |
|
1164 apply(auto)[1] |
|
1165 apply(auto)[1] |
|
1166 apply(simp) |
|
1167 apply(simp) |
|
1168 apply(rule_tac x="vs" in exI) |
|
1169 apply(rule_tac x="[]" in exI) |
|
1170 apply(auto) |
|
1171 by (metis Prf.intros(9) append_Nil atMost_iff empty_iff le_imp_less_Suc less_antisym list.set(1) nth_mem zero_le) |
|
1172 |
|
1173 lemma LV_FROMNTIMES_6: |
|
1174 assumes "\<forall>s. finite (LV r s)" |
|
1175 shows "finite (LV (FROMNTIMES r n) s)" |
|
1176 apply(rule finite_subset) |
|
1177 apply(rule LV_FROMNTIMES_5) |
|
1178 apply(rule finite_Stars_Append) |
|
1179 apply(rule LV_STAR_finite) |
|
1180 apply(rule assms) |
|
1181 apply(rule finite_UN_I) |
|
1182 apply(auto) |
|
1183 by (simp add: assms finite_Stars_Pow ttty) |
|
1184 |
|
1185 lemma LV_NMTIMES_5: |
|
1186 "LV (NMTIMES r n m) s \<subseteq> Stars_Append (LV (STAR r) s) (\<Union>i\<le>n. LV (FROMNTIMES r i) [])" |
|
1187 apply(auto simp add: LV_def) |
|
1188 apply(auto elim!: Prf_elims) |
|
1189 apply(auto simp add: Stars_Append_def) |
|
1190 apply(rule_tac x="vs1" in exI) |
|
1191 apply(rule_tac x="vs2" in exI) |
|
1192 apply(auto) |
|
1193 using Prf.intros(6) apply(auto) |
|
1194 apply(rule_tac x="length vs2" in bexI) |
|
1195 thm Prf.intros |
|
1196 apply(subst append.simps(1)[symmetric]) |
|
1197 apply(rule Prf.intros) |
|
1198 apply(auto)[1] |
|
1199 apply(auto)[1] |
|
1200 apply(simp) |
|
1201 apply(simp) |
|
1202 apply(rule_tac x="vs" in exI) |
|
1203 apply(rule_tac x="[]" in exI) |
|
1204 apply(auto) |
|
1205 by (metis Prf.intros(9) append_Nil atMost_iff empty_iff le_imp_less_Suc less_antisym list.set(1) nth_mem zero_le) |
|
1206 |
|
1207 lemma LV_NMTIMES_6: |
|
1208 assumes "\<forall>s. finite (LV r s)" |
|
1209 shows "finite (LV (NMTIMES r n m) s)" |
|
1210 apply(rule finite_subset) |
|
1211 apply(rule LV_NMTIMES_5) |
|
1212 apply(rule finite_Stars_Append) |
|
1213 apply(rule LV_STAR_finite) |
|
1214 apply(rule assms) |
|
1215 apply(rule finite_UN_I) |
|
1216 apply(auto) |
|
1217 by (simp add: assms finite_Stars_Pow ttty) |
|
1218 |
|
1219 |
|
1220 lemma LV_finite: |
|
1221 shows "finite (LV r s)" |
|
1222 proof(induct r arbitrary: s) |
|
1223 case (ZERO s) |
|
1224 show "finite (LV ZERO s)" by (simp add: LV_simps) |
|
1225 next |
|
1226 case (ONE s) |
|
1227 show "finite (LV ONE s)" by (simp add: LV_simps) |
|
1228 next |
|
1229 case (CHAR c s) |
|
1230 show "finite (LV (CHAR c) s)" by (simp add: LV_simps) |
|
1231 next |
|
1232 case (ALT r1 r2 s) |
|
1233 then show "finite (LV (ALT r1 r2) s)" by (simp add: LV_simps) |
|
1234 next |
|
1235 case (SEQ r1 r2 s) |
|
1236 define f where "f \<equiv> \<lambda>(v1, v2). Seq v1 v2" |
|
1237 define S1 where "S1 \<equiv> \<Union>s' \<in> Prefixes s. LV r1 s'" |
|
1238 define S2 where "S2 \<equiv> \<Union>s' \<in> Suffixes s. LV r2 s'" |
|
1239 have IHs: "\<And>s. finite (LV r1 s)" "\<And>s. finite (LV r2 s)" by fact+ |
|
1240 then have "finite S1" "finite S2" unfolding S1_def S2_def |
|
1241 by (simp_all add: finite_Prefixes finite_Suffixes) |
|
1242 moreover |
|
1243 have "LV (SEQ r1 r2) s \<subseteq> f ` (S1 \<times> S2)" |
|
1244 unfolding f_def S1_def S2_def |
|
1245 unfolding LV_def image_def prefix_def suffix_def |
|
1246 apply (auto elim!: Prf_elims) |
|
1247 by (metis (mono_tags, lifting) mem_Collect_eq) |
|
1248 ultimately |
|
1249 show "finite (LV (SEQ r1 r2) s)" |
|
1250 by (simp add: finite_subset) |
|
1251 next |
|
1252 case (STAR r s) |
|
1253 then show "finite (LV (STAR r) s)" by (simp add: LV_STAR_finite) |
|
1254 next |
|
1255 case (UPNTIMES r n s) |
|
1256 have "\<And>s. finite (LV r s)" by fact |
|
1257 then show "finite (LV (UPNTIMES r n) s)" |
|
1258 by (meson LV_STAR_finite LV_UPNTIMES_STAR rev_finite_subset) |
|
1259 next |
|
1260 case (FROMNTIMES r n s) |
|
1261 have "\<And>s. finite (LV r s)" by fact |
|
1262 then show "finite (LV (FROMNTIMES r n) s)" |
|
1263 by (simp add: LV_FROMNTIMES_6) |
|
1264 next |
|
1265 case (NTIMES r n s) |
|
1266 have "\<And>s. finite (LV r s)" by fact |
|
1267 then show "finite (LV (NTIMES r n) s)" |
|
1268 by (metis (no_types, lifting) LV_NTIMES_4 LV_NTIMES_5 LV_STAR_finite finite_Stars_Append finite_Stars_Pow finite_UN_I finite_atMost finite_subset) |
|
1269 next |
|
1270 case (NMTIMES r n m s) |
|
1271 have "\<And>s. finite (LV r s)" by fact |
|
1272 then show "finite (LV (NMTIMES r n m) s)" |
|
1273 by (simp add: LV_NMTIMES_6) |
|
1274 qed |
|
1275 |
|
1276 |
|
1277 |
|
1278 section {* Our POSIX Definition *} |
|
1279 |
|
1280 inductive |
|
1281 Posix :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100) |
|
1282 where |
|
1283 Posix_ONE: "[] \<in> ONE \<rightarrow> Void" |
|
1284 | Posix_CHAR: "[c] \<in> (CHAR c) \<rightarrow> (Char c)" |
|
1285 | Posix_ALT1: "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)" |
|
1286 | Posix_ALT2: "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)" |
|
1287 | Posix_SEQ: "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2; |
|
1288 \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow> |
|
1289 (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)" |
|
1290 | Posix_STAR1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> []; |
|
1291 \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk> |
|
1292 \<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)" |
|
1293 | Posix_STAR2: "[] \<in> STAR r \<rightarrow> Stars []" |
|
1294 | Posix_NTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> NTIMES r (n - 1) \<rightarrow> Stars vs; flat v \<noteq> []; 0 < n; |
|
1295 \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (NTIMES r (n - 1)))\<rbrakk> |
|
1296 \<Longrightarrow> (s1 @ s2) \<in> NTIMES r n \<rightarrow> Stars (v # vs)" |
|
1297 | Posix_NTIMES2: "\<lbrakk>\<forall>v \<in> set vs. [] \<in> r \<rightarrow> v; length vs = n\<rbrakk> |
|
1298 \<Longrightarrow> [] \<in> NTIMES r n \<rightarrow> Stars vs" |
|
1299 | Posix_UPNTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> UPNTIMES r (n - 1) \<rightarrow> Stars vs; flat v \<noteq> []; 0 < n; |
|
1300 \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (n - 1)))\<rbrakk> |
|
1301 \<Longrightarrow> (s1 @ s2) \<in> UPNTIMES r n \<rightarrow> Stars (v # vs)" |
|
1302 | Posix_UPNTIMES2: "[] \<in> UPNTIMES r n \<rightarrow> Stars []" |
|
1303 | Posix_FROMNTIMES2: "\<lbrakk>\<forall>v \<in> set vs. [] \<in> r \<rightarrow> v; length vs = n\<rbrakk> |
|
1304 \<Longrightarrow> [] \<in> FROMNTIMES r n \<rightarrow> Stars vs" |
|
1305 | Posix_FROMNTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> FROMNTIMES r (n - 1) \<rightarrow> Stars vs; flat v \<noteq> []; 0 < n; |
|
1306 \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (FROMNTIMES r (n - 1)))\<rbrakk> |
|
1307 \<Longrightarrow> (s1 @ s2) \<in> FROMNTIMES r n \<rightarrow> Stars (v # vs)" |
|
1308 | Posix_FROMNTIMES3: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> []; |
|
1309 \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk> |
|
1310 \<Longrightarrow> (s1 @ s2) \<in> FROMNTIMES r 0 \<rightarrow> Stars (v # vs)" |
|
1311 | Posix_NMTIMES2: "\<lbrakk>\<forall>v \<in> set vs. [] \<in> r \<rightarrow> v; length vs = n; n \<le> m\<rbrakk> |
|
1312 \<Longrightarrow> [] \<in> NMTIMES r n m \<rightarrow> Stars vs" |
|
1313 | Posix_NMTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> NMTIMES r (n - 1) (m - 1) \<rightarrow> Stars vs; flat v \<noteq> []; 0 < n; n \<le> m; |
|
1314 \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (NMTIMES r (n - 1) (m - 1)))\<rbrakk> |
|
1315 \<Longrightarrow> (s1 @ s2) \<in> NMTIMES r n m \<rightarrow> Stars (v # vs)" |
|
1316 | Posix_NMTIMES3: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> UPNTIMES r (m - 1) \<rightarrow> Stars vs; flat v \<noteq> []; 0 < m; |
|
1317 \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (m - 1)))\<rbrakk> |
|
1318 \<Longrightarrow> (s1 @ s2) \<in> NMTIMES r 0 m \<rightarrow> Stars (v # vs)" |
|
1319 |
|
1320 inductive_cases Posix_elims: |
|
1321 "s \<in> ZERO \<rightarrow> v" |
|
1322 "s \<in> ONE \<rightarrow> v" |
|
1323 "s \<in> CHAR c \<rightarrow> v" |
|
1324 "s \<in> ALT r1 r2 \<rightarrow> v" |
|
1325 "s \<in> SEQ r1 r2 \<rightarrow> v" |
|
1326 "s \<in> STAR r \<rightarrow> v" |
|
1327 "s \<in> NTIMES r n \<rightarrow> v" |
|
1328 "s \<in> UPNTIMES r n \<rightarrow> v" |
|
1329 "s \<in> FROMNTIMES r n \<rightarrow> v" |
|
1330 "s \<in> NMTIMES r n m \<rightarrow> v" |
|
1331 |
|
1332 lemma Posix1: |
|
1333 assumes "s \<in> r \<rightarrow> v" |
|
1334 shows "s \<in> L r" "flat v = s" |
|
1335 using assms |
|
1336 apply(induct s r v rule: Posix.induct) |
|
1337 apply(auto simp add: Sequ_def)[18] |
|
1338 apply(case_tac n) |
|
1339 apply(simp) |
|
1340 apply(simp add: Sequ_def) |
|
1341 apply(auto)[1] |
|
1342 apply(simp) |
|
1343 apply(clarify) |
|
1344 apply(rule_tac x="Suc x" in bexI) |
|
1345 apply(simp add: Sequ_def) |
|
1346 apply(auto)[5] |
|
1347 using nth_mem nullable.simps(9) nullable_correctness apply auto[1] |
|
1348 apply simp |
|
1349 apply(simp) |
|
1350 apply(clarify) |
|
1351 apply(rule_tac x="Suc x" in bexI) |
|
1352 apply(simp add: Sequ_def) |
|
1353 apply(auto)[3] |
|
1354 defer |
|
1355 apply(simp) |
|
1356 apply fastforce |
|
1357 apply(simp) |
|
1358 apply(simp) |
|
1359 apply(clarify) |
|
1360 apply(rule_tac x="Suc x" in bexI) |
|
1361 apply(auto simp add: Sequ_def)[2] |
|
1362 apply(simp) |
|
1363 apply(simp) |
|
1364 apply(clarify) |
|
1365 apply(rule_tac x="Suc x" in bexI) |
|
1366 apply(auto simp add: Sequ_def)[2] |
|
1367 apply(simp) |
|
1368 apply(simp add: Star.step Star_Pow) |
|
1369 done |
|
1370 |
|
1371 text {* |
|
1372 Our Posix definition determines a unique value. |
|
1373 *} |
|
1374 |
|
1375 lemma List_eq_zipI: |
|
1376 assumes "\<forall>(v1, v2) \<in> set (zip vs1 vs2). v1 = v2" |
|
1377 and "length vs1 = length vs2" |
|
1378 shows "vs1 = vs2" |
|
1379 using assms |
|
1380 apply(induct vs1 arbitrary: vs2) |
|
1381 apply(case_tac vs2) |
|
1382 apply(simp) |
|
1383 apply(simp) |
|
1384 apply(case_tac vs2) |
|
1385 apply(simp) |
|
1386 apply(simp) |
|
1387 done |
|
1388 |
|
1389 lemma Posix_determ: |
|
1390 assumes "s \<in> r \<rightarrow> v1" "s \<in> r \<rightarrow> v2" |
|
1391 shows "v1 = v2" |
|
1392 using assms |
|
1393 proof (induct s r v1 arbitrary: v2 rule: Posix.induct) |
|
1394 case (Posix_ONE v2) |
|
1395 have "[] \<in> ONE \<rightarrow> v2" by fact |
|
1396 then show "Void = v2" by cases auto |
|
1397 next |
|
1398 case (Posix_CHAR c v2) |
|
1399 have "[c] \<in> CHAR c \<rightarrow> v2" by fact |
|
1400 then show "Char c = v2" by cases auto |
|
1401 next |
|
1402 case (Posix_ALT1 s r1 v r2 v2) |
|
1403 have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact |
|
1404 moreover |
|
1405 have "s \<in> r1 \<rightarrow> v" by fact |
|
1406 then have "s \<in> L r1" by (simp add: Posix1) |
|
1407 ultimately obtain v' where eq: "v2 = Left v'" "s \<in> r1 \<rightarrow> v'" by cases auto |
|
1408 moreover |
|
1409 have IH: "\<And>v2. s \<in> r1 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact |
|
1410 ultimately have "v = v'" by simp |
|
1411 then show "Left v = v2" using eq by simp |
|
1412 next |
|
1413 case (Posix_ALT2 s r2 v r1 v2) |
|
1414 have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact |
|
1415 moreover |
|
1416 have "s \<notin> L r1" by fact |
|
1417 ultimately obtain v' where eq: "v2 = Right v'" "s \<in> r2 \<rightarrow> v'" |
|
1418 by cases (auto simp add: Posix1) |
|
1419 moreover |
|
1420 have IH: "\<And>v2. s \<in> r2 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact |
|
1421 ultimately have "v = v'" by simp |
|
1422 then show "Right v = v2" using eq by simp |
|
1423 next |
|
1424 case (Posix_SEQ s1 r1 v1 s2 r2 v2 v') |
|
1425 have "(s1 @ s2) \<in> SEQ r1 r2 \<rightarrow> v'" |
|
1426 "s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" |
|
1427 "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact+ |
|
1428 then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \<in> r1 \<rightarrow> v1'" "s2 \<in> r2 \<rightarrow> v2'" |
|
1429 apply(cases) apply (auto simp add: append_eq_append_conv2) |
|
1430 using Posix1(1) by fastforce+ |
|
1431 moreover |
|
1432 have IHs: "\<And>v1'. s1 \<in> r1 \<rightarrow> v1' \<Longrightarrow> v1 = v1'" |
|
1433 "\<And>v2'. s2 \<in> r2 \<rightarrow> v2' \<Longrightarrow> v2 = v2'" by fact+ |
|
1434 ultimately show "Seq v1 v2 = v'" by simp |
|
1435 next |
|
1436 case (Posix_STAR1 s1 r v s2 vs v2) |
|
1437 have "(s1 @ s2) \<in> STAR r \<rightarrow> v2" |
|
1438 "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []" |
|
1439 "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+ |
|
1440 then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')" |
|
1441 apply(cases) apply (auto simp add: append_eq_append_conv2) |
|
1442 using Posix1(1) apply fastforce |
|
1443 apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2) |
|
1444 using Posix1(2) by blast |
|
1445 moreover |
|
1446 have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2" |
|
1447 "\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+ |
|
1448 ultimately show "Stars (v # vs) = v2" by auto |
|
1449 next |
|
1450 case (Posix_STAR2 r v2) |
|
1451 have "[] \<in> STAR r \<rightarrow> v2" by fact |
|
1452 then show "Stars [] = v2" by cases (auto simp add: Posix1) |
|
1453 next |
|
1454 case (Posix_NTIMES2 vs r n v2) |
|
1455 then show "Stars vs = v2" |
|
1456 apply(erule_tac Posix_elims) |
|
1457 apply(auto) |
|
1458 apply (simp add: Posix1(2)) |
|
1459 apply(rule List_eq_zipI) |
|
1460 apply(auto) |
|
1461 by (meson in_set_zipE) |
|
1462 next |
|
1463 case (Posix_NTIMES1 s1 r v s2 n vs v2) |
|
1464 have "(s1 @ s2) \<in> NTIMES r n \<rightarrow> v2" |
|
1465 "s1 \<in> r \<rightarrow> v" "s2 \<in> NTIMES r (n - 1) \<rightarrow> Stars vs" "flat v \<noteq> []" |
|
1466 "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (NTIMES r (n - 1 )))" by fact+ |
|
1467 then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (NTIMES r (n - 1)) \<rightarrow> (Stars vs')" |
|
1468 apply(cases) apply (auto simp add: append_eq_append_conv2) |
|
1469 using Posix1(1) apply fastforce |
|
1470 apply (metis One_nat_def Posix1(1) Posix_NTIMES1.hyps(7) append.right_neutral append_self_conv2) |
|
1471 using Posix1(2) by blast |
|
1472 moreover |
|
1473 have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2" |
|
1474 "\<And>v2. s2 \<in> NTIMES r (n - 1) \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+ |
|
1475 ultimately show "Stars (v # vs) = v2" by auto |
|
1476 next |
|
1477 case (Posix_UPNTIMES1 s1 r v s2 n vs v2) |
|
1478 have "(s1 @ s2) \<in> UPNTIMES r n \<rightarrow> v2" |
|
1479 "s1 \<in> r \<rightarrow> v" "s2 \<in> UPNTIMES r (n - 1) \<rightarrow> Stars vs" "flat v \<noteq> []" |
|
1480 "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (n - 1 )))" by fact+ |
|
1481 then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (UPNTIMES r (n - 1)) \<rightarrow> (Stars vs')" |
|
1482 apply(cases) apply (auto simp add: append_eq_append_conv2) |
|
1483 using Posix1(1) apply fastforce |
|
1484 apply (metis One_nat_def Posix1(1) Posix_UPNTIMES1.hyps(7) append.right_neutral append_self_conv2) |
|
1485 using Posix1(2) by blast |
|
1486 moreover |
|
1487 have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2" |
|
1488 "\<And>v2. s2 \<in> UPNTIMES r (n - 1) \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+ |
|
1489 ultimately show "Stars (v # vs) = v2" by auto |
|
1490 next |
|
1491 case (Posix_UPNTIMES2 r n v2) |
|
1492 then show "Stars [] = v2" |
|
1493 apply(erule_tac Posix_elims) |
|
1494 apply(auto) |
|
1495 by (simp add: Posix1(2)) |
|
1496 next |
|
1497 case (Posix_FROMNTIMES1 s1 r v s2 n vs v2) |
|
1498 have "(s1 @ s2) \<in> FROMNTIMES r n \<rightarrow> v2" |
|
1499 "s1 \<in> r \<rightarrow> v" "s2 \<in> FROMNTIMES r (n - 1) \<rightarrow> Stars vs" "flat v \<noteq> []" "0 < n" |
|
1500 "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (FROMNTIMES r (n - 1 )))" by fact+ |
|
1501 then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (FROMNTIMES r (n - 1)) \<rightarrow> (Stars vs')" |
|
1502 apply(cases) apply (auto simp add: append_eq_append_conv2) |
|
1503 using Posix1(1) Posix1(2) apply blast |
|
1504 apply(case_tac n) |
|
1505 apply(simp) |
|
1506 apply(simp) |
|
1507 apply(drule_tac x="va" in meta_spec) |
|
1508 apply(drule_tac x="vs" in meta_spec) |
|
1509 apply(simp) |
|
1510 apply(drule meta_mp) |
|
1511 apply (metis L.simps(9) Posix1(1) UN_E append.right_neutral append_Nil diff_Suc_1 local.Posix_FROMNTIMES1(4) val.inject(5)) |
|
1512 apply (metis L.simps(9) Posix1(1) UN_E append.right_neutral append_Nil) |
|
1513 by (metis One_nat_def Posix1(1) Posix_FROMNTIMES1.hyps(7) self_append_conv self_append_conv2) |
|
1514 moreover |
|
1515 have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2" |
|
1516 "\<And>v2. s2 \<in> FROMNTIMES r (n - 1) \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+ |
|
1517 ultimately show "Stars (v # vs) = v2" by auto |
|
1518 next |
|
1519 case (Posix_FROMNTIMES2 vs r n v2) |
|
1520 then show "Stars vs = v2" |
|
1521 apply(erule_tac Posix_elims) |
|
1522 apply(auto) |
|
1523 apply(rule List_eq_zipI) |
|
1524 apply(auto) |
|
1525 apply(meson in_set_zipE) |
|
1526 apply (simp add: Posix1(2)) |
|
1527 using Posix1(2) by blast |
|
1528 next |
|
1529 case (Posix_FROMNTIMES3 s1 r v s2 vs v2) |
|
1530 have "(s1 @ s2) \<in> FROMNTIMES r 0 \<rightarrow> v2" |
|
1531 "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []" |
|
1532 "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+ |
|
1533 then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')" |
|
1534 apply(cases) apply (auto simp add: append_eq_append_conv2) |
|
1535 using Posix1(2) apply fastforce |
|
1536 using Posix1(1) apply fastforce |
|
1537 by (metis Posix1(1) Posix_FROMNTIMES3.hyps(6) append.right_neutral append_Nil) |
|
1538 moreover |
|
1539 have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2" |
|
1540 "\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+ |
|
1541 ultimately show "Stars (v # vs) = v2" by auto |
|
1542 next |
|
1543 case (Posix_NMTIMES1 s1 r v s2 n m vs v2) |
|
1544 have "(s1 @ s2) \<in> NMTIMES r n m \<rightarrow> v2" |
|
1545 "s1 \<in> r \<rightarrow> v" "s2 \<in> NMTIMES r (n - 1) (m - 1) \<rightarrow> Stars vs" "flat v \<noteq> []" |
|
1546 "0 < n" "n \<le> m" |
|
1547 "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (NMTIMES r (n - 1) (m - 1)))" by fact+ |
|
1548 then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" |
|
1549 "s2 \<in> (NMTIMES r (n - 1) (m - 1)) \<rightarrow> (Stars vs')" |
|
1550 apply(cases) apply (auto simp add: append_eq_append_conv2) |
|
1551 using Posix1(1) Posix1(2) apply blast |
|
1552 apply(case_tac n) |
|
1553 apply(simp) |
|
1554 apply(simp) |
|
1555 apply(case_tac m) |
|
1556 apply(simp) |
|
1557 apply(simp) |
|
1558 apply(drule_tac x="va" in meta_spec) |
|
1559 apply(drule_tac x="vs" in meta_spec) |
|
1560 apply(simp) |
|
1561 apply(drule meta_mp) |
|
1562 apply(drule Posix1(1)) |
|
1563 apply(drule Posix1(1)) |
|
1564 apply(drule Posix1(1)) |
|
1565 apply(frule Posix1(1)) |
|
1566 apply(simp) |
|
1567 using Posix_NMTIMES1.hyps(4) apply force |
|
1568 apply (metis L.simps(10) Posix1(1) UN_E append_Nil2 append_self_conv2) |
|
1569 by (metis One_nat_def Posix1(1) Posix_NMTIMES1.hyps(8) append.right_neutral append_Nil) |
|
1570 moreover |
|
1571 have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2" |
|
1572 "\<And>v2. s2 \<in> NMTIMES r (n - 1) (m - 1) \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+ |
|
1573 ultimately show "Stars (v # vs) = v2" by auto |
|
1574 next |
|
1575 case (Posix_NMTIMES2 vs r n m v2) |
|
1576 then show "Stars vs = v2" |
|
1577 apply(erule_tac Posix_elims) |
|
1578 apply(simp) |
|
1579 apply(rule List_eq_zipI) |
|
1580 apply(auto) |
|
1581 apply (meson in_set_zipE) |
|
1582 apply (simp add: Posix1(2)) |
|
1583 apply(erule_tac Posix_elims) |
|
1584 apply(auto) |
|
1585 apply (simp add: Posix1(2))+ |
|
1586 done |
|
1587 next |
|
1588 case (Posix_NMTIMES3 s1 r v s2 m vs v2) |
|
1589 have "(s1 @ s2) \<in> NMTIMES r 0 m \<rightarrow> v2" |
|
1590 "s1 \<in> r \<rightarrow> v" "s2 \<in> UPNTIMES r (m - 1) \<rightarrow> Stars vs" "flat v \<noteq> []" "0 < m" |
|
1591 "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (m - 1 )))" by fact+ |
|
1592 then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (UPNTIMES r (m - 1)) \<rightarrow> (Stars vs')" |
|
1593 apply(cases) apply (auto simp add: append_eq_append_conv2) |
|
1594 using Posix1(2) apply blast |
|
1595 apply (smt L.simps(7) Posix1(1) UN_E append_eq_append_conv2) |
|
1596 by (metis One_nat_def Posix1(1) Posix_NMTIMES3.hyps(7) append.right_neutral append_Nil) |
|
1597 moreover |
|
1598 have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2" |
|
1599 "\<And>v2. s2 \<in> UPNTIMES r (m - 1) \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+ |
|
1600 ultimately show "Stars (v # vs) = v2" by auto |
|
1601 qed |
|
1602 |
|
1603 |
|
1604 text {* |
|
1605 Our POSIX value is a lexical value. |
|
1606 *} |
|
1607 |
|
1608 lemma Posix_LV: |
|
1609 assumes "s \<in> r \<rightarrow> v" |
|
1610 shows "v \<in> LV r s" |
|
1611 using assms unfolding LV_def |
|
1612 apply(induct rule: Posix.induct) |
|
1613 apply(auto simp add: intro!: Prf.intros elim!: Prf_elims)[7] |
|
1614 defer |
|
1615 defer |
|
1616 apply(auto simp add: intro!: Prf.intros elim!: Prf_elims)[2] |
|
1617 apply (metis (mono_tags, lifting) Prf.intros(9) append_Nil empty_iff flat_Stars flats_empty list.set(1) mem_Collect_eq) |
|
1618 apply(simp) |
|
1619 apply(clarify) |
|
1620 apply(case_tac n) |
|
1621 apply(simp) |
|
1622 apply(simp) |
|
1623 apply(erule Prf_elims) |
|
1624 apply(simp) |
|
1625 apply(subst append.simps(2)[symmetric]) |
|
1626 apply(rule Prf.intros) |
|
1627 apply(simp) |
|
1628 apply(simp) |
|
1629 apply(simp) |
|
1630 apply(simp) |
|
1631 apply(rule Prf.intros) |
|
1632 apply(simp) |
|
1633 apply(simp) |
|
1634 apply(simp) |
|
1635 apply(clarify) |
|
1636 apply(erule Prf_elims) |
|
1637 apply(simp) |
|
1638 apply(rule Prf.intros) |
|
1639 apply(simp) |
|
1640 apply(simp) |
|
1641 (* NTIMES *) |
|
1642 prefer 4 |
|
1643 apply(simp) |
|
1644 apply(case_tac n) |
|
1645 apply(simp) |
|
1646 apply(simp) |
|
1647 apply(clarify) |
|
1648 apply(rotate_tac 5) |
|
1649 apply(erule Prf_elims) |
|
1650 apply(simp) |
|
1651 apply(subst append.simps(2)[symmetric]) |
|
1652 apply(rule Prf.intros) |
|
1653 apply(simp) |
|
1654 apply(simp) |
|
1655 apply(simp) |
|
1656 prefer 4 |
|
1657 apply(simp) |
|
1658 apply (metis Prf.intros(8) length_removeAll_less less_irrefl_nat removeAll.simps(1) self_append_conv2) |
|
1659 (* NMTIMES *) |
|
1660 apply(simp) |
|
1661 apply (metis Prf.intros(11) append_Nil empty_iff list.set(1)) |
|
1662 apply(simp) |
|
1663 apply(clarify) |
|
1664 apply(rotate_tac 6) |
|
1665 apply(erule Prf_elims) |
|
1666 apply(simp) |
|
1667 apply(subst append.simps(2)[symmetric]) |
|
1668 apply(rule Prf.intros) |
|
1669 apply(simp) |
|
1670 apply(simp) |
|
1671 apply(simp) |
|
1672 apply(simp) |
|
1673 apply(rule Prf.intros) |
|
1674 apply(simp) |
|
1675 apply(simp) |
|
1676 apply(simp) |
|
1677 apply(simp) |
|
1678 apply(clarify) |
|
1679 apply(rotate_tac 6) |
|
1680 apply(erule Prf_elims) |
|
1681 apply(simp) |
|
1682 apply(rule Prf.intros) |
|
1683 apply(simp) |
|
1684 apply(simp) |
|
1685 apply(simp) |
|
1686 done |
|
1687 |
|
1688 end |