--- a/thys/Lexer.thy Tue Jul 04 18:09:29 2017 +0100
+++ b/thys/Lexer.thy Thu Jul 06 16:05:33 2017 +0100
@@ -85,6 +85,13 @@
by (induct x\<equiv>"c # x" rule: Star.induct)
(auto simp add: append_eq_Cons_conv)
+lemma Star_Der_Sequ:
+ shows "Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>"
+unfolding Der_def
+by(auto simp add: Der_def Sequ_def Star_decomp)
+
+
+
lemma Der_star [simp]:
shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
proof -
@@ -95,8 +102,7 @@
also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
by simp
also have "... = (Der c A) ;; A\<star>"
- unfolding Sequ_def Der_def
- by (auto dest: Star_decomp)
+ using Star_Der_Sequ by auto
finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
qed