diff -r 00c9a95d492e -r e2828c4a1e23 thys/Lexer.thy --- a/thys/Lexer.thy Tue Jul 04 18:09:29 2017 +0100 +++ b/thys/Lexer.thy Thu Jul 06 16:05:33 2017 +0100 @@ -85,6 +85,13 @@ by (induct x\"c # x" rule: Star.induct) (auto simp add: append_eq_Cons_conv) +lemma Star_Der_Sequ: + shows "Der c (A\) \ (Der c A) ;; A\" +unfolding Der_def +by(auto simp add: Der_def Sequ_def Star_decomp) + + + lemma Der_star [simp]: shows "Der c (A\) = (Der c A) ;; A\" proof - @@ -95,8 +102,7 @@ also have "... = (Der c A) ;; A\ \ (if [] \ A then Der c (A\) else {})" by simp also have "... = (Der c A) ;; A\" - unfolding Sequ_def Der_def - by (auto dest: Star_decomp) + using Star_Der_Sequ by auto finally show "Der c (A\) = (Der c A) ;; A\" . qed