--- a/ChengsongTanPhdThesis/Chapters/Finite.tex Sun Nov 06 23:06:10 2022 +0000
+++ b/ChengsongTanPhdThesis/Chapters/Finite.tex Mon Nov 07 21:31:07 2022 +0000
@@ -370,6 +370,14 @@
\end{center}
\noindent
where we omit the definition of $\textit{rnullable}$.
+The generalisation from derivative w.r.t to character to
+derivative w.r.t string is given as
+\begin{center}
+ \begin{tabular}{lcl}
+ $r \backslash_{rs} []$ & $\dn$ & $r$\\
+ $r \backslash_{rs} c::s$ & $\dn$ & $(r\backslash_r c) \backslash_{rs} s$
+ \end{tabular}
+\end{center}
The function $\distinctBy$ for r-regular expressions does not need
a function checking equivalence because
@@ -778,7 +786,7 @@
\subsubsection{The Properties of $\textit{Rflts}$}
We give in this subsection some properties
-involving $\backslash_r$, $\backslash_{rsimp}$, $\textit{rflts}$ and
+involving $\backslash_r$, $\backslash_{rsimps}$, $\textit{rflts}$ and
$\textit{rsimp}_{ALTS} $, together with any non-trivial lemmas that lead to them.
These will be helpful in later closed form proofs, when
we want to transform derivative terms which have
@@ -1430,7 +1438,7 @@
As corollaries of \ref{insideSimpRemoval}, we have
\begin{itemize}
\item
- If $s \neq []$ then $\rderssimp{r}{s} = \rsimp{(\rders \; r \; s)}$.
+ If $s \neq []$ then $\rderssimp{r}{s} = \rsimp{( r \backslash_{rs} s)}$.
\item
$\rsimpalts \; (\map \; (\_ \backslash_r x) \;
(\rdistinct{rs}{\varnothing})) \sequal
@@ -1844,7 +1852,7 @@
$\starupdate \; c \; r \; [] $ & $\dn$ & $[]$\\
$\starupdate \; c \; r \; (s :: Ss)$ & $\dn$ & \\
& & $\textit{if} \;
- (\rnullable \; (\rders \; r \; s))$ \\
+ (\rnullable \; (r \backslash_{rs} s))$ \\
& & $\textit{then} \;\; (s @ [c]) :: [c] :: (
\starupdate \; c \; r \; Ss)$ \\
& & $\textit{else} \;\; (s @ [c]) :: (
@@ -2034,7 +2042,7 @@
of the shape $\sum_{s' \in sS} (r\backslash_r s') \cdot r^*$,
where $sS = \starupdates \; s \; r \; [[c]]$. Namely,
\begin{center}
- $\hflataux{(\rders{( (\rder{c}{r_0})\cdot(r_0^*))}{s})} =
+ $\hflataux{(( (\rder{c}{r_0})\cdot(r_0^*))\backslash_{rs} s)} =
\map \; (\lambda s_1. (r_0 \backslash_r s_1) \cdot (r_0^*)) \;
(\starupdates \; s \; r_0 \; [[c]])$
\end{center}
@@ -2095,7 +2103,7 @@
\sum \; ( ( \sum (\lambda s. (r\backslash_r s) \cdot r^*) \; (
\starupdates \; s \; r \; [ c::[]] ) ) )$
\item
- $r \backslash_{rsimp} (c::s) = \textit{rsimp} \; ( (
+ $r \backslash_{rsimps} (c::s) = \textit{rsimp} \; ( (
\sum ( (\map \; (\lambda s_1. (r\backslash s_1) \; r^*) \;
(\starupdates \;s \; r \; [ c::[] ])))))$
\item
@@ -2113,7 +2121,7 @@
s \; r \; [ c::[] ])))))$\\
$\sequal$\\
$( ( \sum ( ( \map \ (\lambda s. \;\;
- ( r \backslash_{rsimp} s)) \cdot r^*) \; (\starupdates \;
+ ( r \backslash_{rsimps} s)) \cdot r^*) \; (\starupdates \;
s \; r \; [ c::[] ]))))$\\
\end{itemize}
\end{lemma}
@@ -2483,10 +2491,10 @@
\begin{center}
\begin{tabular}{lcll}
& & $ \llbracket \rderssimp{r_1\cdot r_2 }{s} \rrbracket_r $\\
-& $ = $ & $\llbracket \rsimp{(\sum(r_1 \backslash_{rsimp} s \cdot r_2 \; \; :: \; \;
- \map \; (r_2\backslash_{rsimp} \_)\; (\vsuf{s}{r})))} \rrbracket_r $ & (1) \\
- & $\leq$ & $\llbracket \rdistinct{(r_1 \backslash_{rsimp} s \cdot r_2 \; \; :: \; \;
- \map \; (r_2\backslash_{rsimp} \_)\; (\vsuf{s}{r}))}{\varnothing} \rrbracket_r + 1$ & (2) \\
+& $ = $ & $\llbracket \rsimp{(\sum(r_1 \backslash_{rsimps} s \cdot r_2 \; \; :: \; \;
+ \map \; (r_2\backslash_{rsimps} \_)\; (\vsuf{s}{r})))} \rrbracket_r $ & (1) \\
+ & $\leq$ & $\llbracket \rdistinct{(r_1 \backslash_{rsimps} s \cdot r_2 \; \; :: \; \;
+ \map \; (r_2\backslash_{rsimps} \_)\; (\vsuf{s}{r}))}{\varnothing} \rrbracket_r + 1$ & (2) \\
& $\leq$ & $2 + N_1 + \rsize{r_2} + (N_2 * (card\;(\sizeNregex \; N_2)))$ & (3)\\
\end{tabular}
\end{center}
@@ -2514,12 +2522,12 @@
\begin{center}
\begin{tabular}{lcll}
& & $ \llbracket \rderssimp{r^* }{c::cs} \rrbracket_r $\\
-& $ = $ & $\llbracket \rsimp{(\sum (\map \; (\lambda s. (r \backslash_{rsimp} s) \cdot r^*) \; (\starupdates\;
+& $ = $ & $\llbracket \rsimp{(\sum (\map \; (\lambda s. (r \backslash_{rsimps} s) \cdot r^*) \; (\starupdates\;
cs \; r \; [[c]] )) )} \rrbracket_r $ & (5) \\
& $\leq$ & $\llbracket
\rdistinct{
(\map \;
- (\lambda s. (r \backslash_{rsimp} s) \cdot r^*) \;
+ (\lambda s. (r \backslash_{rsimps} s) \cdot r^*) \;
(\starupdates\; cs \; r \; [[c]] )
)}
{\varnothing} \rrbracket_r + 1$ & (6) \\
@@ -2547,8 +2555,8 @@
\begin{center}
\begin{tabular}{lcll}
& & $ \llbracket \rderssimp{\sum rs }{c::cs} \rrbracket_r $\\
-& $ = $ & $\llbracket \rsimp{(\sum (\map \; (\_ \backslash_{rsimp} s) \; rs) )} \rrbracket_r $ & (9) \\
-& $\leq$ & $\llbracket (\sum (\map \; (\_ \backslash_{rsimp} s) \; rs) ) \rrbracket_r $ & (10) \\
+& $ = $ & $\llbracket \rsimp{(\sum (\map \; (\_ \backslash_{rsimps} s) \; rs) )} \rrbracket_r $ & (9) \\
+& $\leq$ & $\llbracket (\sum (\map \; (\_ \backslash_{rsimps} s) \; rs) ) \rrbracket_r $ & (10) \\
& $\leq$ & $1 + N * (length \; rs) $ & (11)\\
\end{tabular}
\end{center}