diff -r 2072a8d54e3e -r ae6010c14e49 ChengsongTanPhdThesis/Chapters/Finite.tex --- a/ChengsongTanPhdThesis/Chapters/Finite.tex Sun Nov 06 23:06:10 2022 +0000 +++ b/ChengsongTanPhdThesis/Chapters/Finite.tex Mon Nov 07 21:31:07 2022 +0000 @@ -370,6 +370,14 @@ \end{center} \noindent where we omit the definition of $\textit{rnullable}$. +The generalisation from derivative w.r.t to character to +derivative w.r.t string is given as +\begin{center} + \begin{tabular}{lcl} + $r \backslash_{rs} []$ & $\dn$ & $r$\\ + $r \backslash_{rs} c::s$ & $\dn$ & $(r\backslash_r c) \backslash_{rs} s$ + \end{tabular} +\end{center} The function $\distinctBy$ for r-regular expressions does not need a function checking equivalence because @@ -778,7 +786,7 @@ \subsubsection{The Properties of $\textit{Rflts}$} We give in this subsection some properties -involving $\backslash_r$, $\backslash_{rsimp}$, $\textit{rflts}$ and +involving $\backslash_r$, $\backslash_{rsimps}$, $\textit{rflts}$ and $\textit{rsimp}_{ALTS} $, together with any non-trivial lemmas that lead to them. These will be helpful in later closed form proofs, when we want to transform derivative terms which have @@ -1430,7 +1438,7 @@ As corollaries of \ref{insideSimpRemoval}, we have \begin{itemize} \item - If $s \neq []$ then $\rderssimp{r}{s} = \rsimp{(\rders \; r \; s)}$. + If $s \neq []$ then $\rderssimp{r}{s} = \rsimp{( r \backslash_{rs} s)}$. \item $\rsimpalts \; (\map \; (\_ \backslash_r x) \; (\rdistinct{rs}{\varnothing})) \sequal @@ -1844,7 +1852,7 @@ $\starupdate \; c \; r \; [] $ & $\dn$ & $[]$\\ $\starupdate \; c \; r \; (s :: Ss)$ & $\dn$ & \\ & & $\textit{if} \; - (\rnullable \; (\rders \; r \; s))$ \\ + (\rnullable \; (r \backslash_{rs} s))$ \\ & & $\textit{then} \;\; (s @ [c]) :: [c] :: ( \starupdate \; c \; r \; Ss)$ \\ & & $\textit{else} \;\; (s @ [c]) :: ( @@ -2034,7 +2042,7 @@ of the shape $\sum_{s' \in sS} (r\backslash_r s') \cdot r^*$, where $sS = \starupdates \; s \; r \; [[c]]$. Namely, \begin{center} - $\hflataux{(\rders{( (\rder{c}{r_0})\cdot(r_0^*))}{s})} = + $\hflataux{(( (\rder{c}{r_0})\cdot(r_0^*))\backslash_{rs} s)} = \map \; (\lambda s_1. (r_0 \backslash_r s_1) \cdot (r_0^*)) \; (\starupdates \; s \; r_0 \; [[c]])$ \end{center} @@ -2095,7 +2103,7 @@ \sum \; ( ( \sum (\lambda s. (r\backslash_r s) \cdot r^*) \; ( \starupdates \; s \; r \; [ c::[]] ) ) )$ \item - $r \backslash_{rsimp} (c::s) = \textit{rsimp} \; ( ( + $r \backslash_{rsimps} (c::s) = \textit{rsimp} \; ( ( \sum ( (\map \; (\lambda s_1. (r\backslash s_1) \; r^*) \; (\starupdates \;s \; r \; [ c::[] ])))))$ \item @@ -2113,7 +2121,7 @@ s \; r \; [ c::[] ])))))$\\ $\sequal$\\ $( ( \sum ( ( \map \ (\lambda s. \;\; - ( r \backslash_{rsimp} s)) \cdot r^*) \; (\starupdates \; + ( r \backslash_{rsimps} s)) \cdot r^*) \; (\starupdates \; s \; r \; [ c::[] ]))))$\\ \end{itemize} \end{lemma} @@ -2483,10 +2491,10 @@ \begin{center} \begin{tabular}{lcll} & & $ \llbracket \rderssimp{r_1\cdot r_2 }{s} \rrbracket_r $\\ -& $ = $ & $\llbracket \rsimp{(\sum(r_1 \backslash_{rsimp} s \cdot r_2 \; \; :: \; \; - \map \; (r_2\backslash_{rsimp} \_)\; (\vsuf{s}{r})))} \rrbracket_r $ & (1) \\ - & $\leq$ & $\llbracket \rdistinct{(r_1 \backslash_{rsimp} s \cdot r_2 \; \; :: \; \; - \map \; (r_2\backslash_{rsimp} \_)\; (\vsuf{s}{r}))}{\varnothing} \rrbracket_r + 1$ & (2) \\ +& $ = $ & $\llbracket \rsimp{(\sum(r_1 \backslash_{rsimps} s \cdot r_2 \; \; :: \; \; + \map \; (r_2\backslash_{rsimps} \_)\; (\vsuf{s}{r})))} \rrbracket_r $ & (1) \\ + & $\leq$ & $\llbracket \rdistinct{(r_1 \backslash_{rsimps} s \cdot r_2 \; \; :: \; \; + \map \; (r_2\backslash_{rsimps} \_)\; (\vsuf{s}{r}))}{\varnothing} \rrbracket_r + 1$ & (2) \\ & $\leq$ & $2 + N_1 + \rsize{r_2} + (N_2 * (card\;(\sizeNregex \; N_2)))$ & (3)\\ \end{tabular} \end{center} @@ -2514,12 +2522,12 @@ \begin{center} \begin{tabular}{lcll} & & $ \llbracket \rderssimp{r^* }{c::cs} \rrbracket_r $\\ -& $ = $ & $\llbracket \rsimp{(\sum (\map \; (\lambda s. (r \backslash_{rsimp} s) \cdot r^*) \; (\starupdates\; +& $ = $ & $\llbracket \rsimp{(\sum (\map \; (\lambda s. (r \backslash_{rsimps} s) \cdot r^*) \; (\starupdates\; cs \; r \; [[c]] )) )} \rrbracket_r $ & (5) \\ & $\leq$ & $\llbracket \rdistinct{ (\map \; - (\lambda s. (r \backslash_{rsimp} s) \cdot r^*) \; + (\lambda s. (r \backslash_{rsimps} s) \cdot r^*) \; (\starupdates\; cs \; r \; [[c]] ) )} {\varnothing} \rrbracket_r + 1$ & (6) \\ @@ -2547,8 +2555,8 @@ \begin{center} \begin{tabular}{lcll} & & $ \llbracket \rderssimp{\sum rs }{c::cs} \rrbracket_r $\\ -& $ = $ & $\llbracket \rsimp{(\sum (\map \; (\_ \backslash_{rsimp} s) \; rs) )} \rrbracket_r $ & (9) \\ -& $\leq$ & $\llbracket (\sum (\map \; (\_ \backslash_{rsimp} s) \; rs) ) \rrbracket_r $ & (10) \\ +& $ = $ & $\llbracket \rsimp{(\sum (\map \; (\_ \backslash_{rsimps} s) \; rs) )} \rrbracket_r $ & (9) \\ +& $\leq$ & $\llbracket (\sum (\map \; (\_ \backslash_{rsimps} s) \; rs) ) \rrbracket_r $ & (10) \\ & $\leq$ & $1 + N * (length \; rs) $ & (11)\\ \end{tabular} \end{center}