--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/GeneralRegexBound.thy Wed Mar 09 17:33:08 2022 +0000
@@ -0,0 +1,97 @@
+theory GeneralRegexBound imports
+"BasicIdentities"
+begin
+
+
+lemma non_zero_size:
+ shows "rsize r \<ge> Suc 0"
+ apply(induct r)
+ apply auto done
+
+corollary size_geq1:
+ shows "rsize r \<ge> 1"
+ by (simp add: non_zero_size)
+
+
+definition SEQ_set where
+ "SEQ_set A n \<equiv> {RSEQ r1 r2 | r1 r2. r1 \<in> A \<and> r2 \<in> A \<and> rsize r1 + rsize r2 \<le> n}"
+
+definition SEQ_set_cartesian where
+"SEQ_set_cartesian A n = {RSEQ r1 r2 | r1 r2. r1 \<in> A \<and> r2 \<in> A}"
+
+definition ALT_set where
+"ALT_set A n \<equiv> {RALTS rs | rs. set rs \<subseteq> A \<and> sum_list (map rsize rs) \<le> n}"
+
+
+definition
+ "sizeNregex N \<equiv> {r. rsize r \<le> N}"
+
+lemma sizenregex_induct:
+ shows "sizeNregex (Suc n) = sizeNregex n \<union> {RZERO, RONE, RALTS []} \<union> {RCHAR c| c. True} \<union>
+SEQ_set ( sizeNregex n) n \<union> ALT_set (sizeNregex n) n \<union> (RSTAR ` (sizeNregex n))"
+ sorry
+
+
+lemma chars_finite:
+ shows "finite (RCHAR ` (UNIV::(char set)))"
+ apply(simp)
+ done
+
+thm full_SetCompr_eq
+
+lemma size1finite:
+ shows "finite (sizeNregex (Suc 0))"
+ apply(subst sizenregex_induct)
+ apply(subst finite_Un)+
+ apply(subgoal_tac "sizeNregex 0 = {}")
+ apply(rule conjI)+
+ apply (metis Collect_empty_eq finite.emptyI non_zero_size not_less_eq_eq sizeNregex_def)
+ apply simp
+ apply (simp add: full_SetCompr_eq)
+ apply (simp add: SEQ_set_def)
+ apply (simp add: ALT_set_def)
+ apply(simp add: full_SetCompr_eq)
+ using non_zero_size not_less_eq_eq sizeNregex_def by fastforce
+
+lemma seq_included_in_cart:
+ shows "SEQ_set A n \<subseteq> SEQ_set_cartesian A n"
+ using SEQ_set_cartesian_def SEQ_set_def by fastforce
+
+lemma finite_seq:
+ shows " finite (sizeNregex n) \<Longrightarrow> finite (SEQ_set (sizeNregex n) n)"
+ apply(rule finite_subset)
+ sorry
+
+
+lemma finite_size_n:
+ shows "finite (sizeNregex n)"
+ apply(induct n)
+ apply (metis Collect_empty_eq finite.emptyI non_zero_size not_less_eq_eq sizeNregex_def)
+ apply(subst sizenregex_induct)
+ apply(subst finite_Un)+
+ apply(rule conjI)+
+ apply simp
+ apply simp
+ apply (simp add: full_SetCompr_eq)
+
+ sorry
+
+lemma three_easy_cases0: shows
+"rsize (rders_simp RZERO s) \<le> Suc 0"
+ sorry
+
+
+lemma three_easy_cases1: shows
+"rsize (rders_simp RONE s) \<le> Suc 0"
+ sorry
+
+lemma three_easy_casesC: shows
+"rsize (rders_simp (RCHAR c) s) \<le> Suc 0"
+
+ sorry
+
+
+
+
+end
+