thys2/GeneralRegexBound.thy
changeset 444 a7e98deebb5c
child 451 7a016eeb118d
equal deleted inserted replaced
443:c6351a96bf80 444:a7e98deebb5c
       
     1 theory GeneralRegexBound imports 
       
     2 "BasicIdentities"
       
     3 begin
       
     4 
       
     5 
       
     6 lemma non_zero_size:
       
     7   shows "rsize r \<ge> Suc 0"
       
     8   apply(induct r)
       
     9   apply auto done
       
    10 
       
    11 corollary size_geq1:
       
    12   shows "rsize r \<ge> 1"
       
    13   by (simp add: non_zero_size)
       
    14 
       
    15 
       
    16 definition SEQ_set where
       
    17   "SEQ_set A n \<equiv> {RSEQ r1 r2 | r1 r2. r1 \<in> A \<and> r2 \<in> A \<and> rsize r1 + rsize r2 \<le> n}"
       
    18 
       
    19 definition SEQ_set_cartesian where
       
    20 "SEQ_set_cartesian A n  = {RSEQ r1 r2 | r1 r2. r1 \<in> A \<and> r2 \<in> A}"
       
    21 
       
    22 definition ALT_set where
       
    23 "ALT_set A n \<equiv> {RALTS rs | rs. set rs \<subseteq> A \<and> sum_list (map rsize rs) \<le> n}"
       
    24 
       
    25 
       
    26 definition
       
    27   "sizeNregex N \<equiv> {r. rsize r \<le> N}"
       
    28 
       
    29 lemma sizenregex_induct:
       
    30   shows "sizeNregex (Suc n) = sizeNregex n \<union> {RZERO, RONE, RALTS []} \<union> {RCHAR c| c. True} \<union>
       
    31 SEQ_set ( sizeNregex n) n \<union> ALT_set (sizeNregex n) n \<union> (RSTAR ` (sizeNregex n))"
       
    32   sorry
       
    33 
       
    34 
       
    35 lemma chars_finite:
       
    36   shows "finite (RCHAR ` (UNIV::(char set)))"
       
    37   apply(simp)
       
    38   done
       
    39 
       
    40 thm full_SetCompr_eq 
       
    41 
       
    42 lemma size1finite:
       
    43   shows "finite (sizeNregex (Suc 0))"
       
    44   apply(subst sizenregex_induct)
       
    45   apply(subst finite_Un)+
       
    46   apply(subgoal_tac "sizeNregex 0 = {}")
       
    47   apply(rule conjI)+
       
    48   apply (metis Collect_empty_eq finite.emptyI non_zero_size not_less_eq_eq sizeNregex_def)
       
    49       apply simp
       
    50       apply (simp add: full_SetCompr_eq)
       
    51   apply (simp add: SEQ_set_def)
       
    52     apply (simp add: ALT_set_def)  
       
    53    apply(simp add: full_SetCompr_eq)
       
    54   using non_zero_size not_less_eq_eq sizeNregex_def by fastforce
       
    55 
       
    56 lemma seq_included_in_cart:
       
    57   shows "SEQ_set A n \<subseteq> SEQ_set_cartesian A n"
       
    58   using SEQ_set_cartesian_def SEQ_set_def by fastforce
       
    59 
       
    60 lemma finite_seq:
       
    61   shows " finite (sizeNregex n) \<Longrightarrow> finite (SEQ_set (sizeNregex n) n)"
       
    62   apply(rule finite_subset)
       
    63   sorry
       
    64 
       
    65 
       
    66 lemma finite_size_n:
       
    67   shows "finite (sizeNregex n)"
       
    68   apply(induct n)
       
    69   apply (metis Collect_empty_eq finite.emptyI non_zero_size not_less_eq_eq sizeNregex_def)
       
    70   apply(subst sizenregex_induct)
       
    71   apply(subst finite_Un)+
       
    72   apply(rule conjI)+
       
    73        apply simp
       
    74       apply simp
       
    75      apply (simp add: full_SetCompr_eq)
       
    76 
       
    77   sorry
       
    78 
       
    79 lemma three_easy_cases0: shows 
       
    80 "rsize (rders_simp RZERO s) \<le> Suc 0"
       
    81   sorry
       
    82 
       
    83 
       
    84 lemma three_easy_cases1: shows 
       
    85 "rsize (rders_simp RONE s) \<le> Suc 0"
       
    86   sorry
       
    87 
       
    88 lemma three_easy_casesC: shows
       
    89 "rsize (rders_simp (RCHAR c) s) \<le> Suc 0"
       
    90 
       
    91   sorry
       
    92 
       
    93 
       
    94 
       
    95 
       
    96 end
       
    97