--- a/ChengsongTanPhdThesis/Chapters/Inj.tex Tue Aug 23 22:59:49 2022 +0100
+++ b/ChengsongTanPhdThesis/Chapters/Inj.tex Sat Aug 27 00:37:03 2022 +0100
@@ -1181,19 +1181,23 @@
simplifications arise.
\section{A Case Requring More Aggressive Simplifications}
For example, when starting with the regular
-expression $(a^* \cdot a^*)^*$ and building a few successive derivatives (around 10)
+expression $(a^* \cdot a^*)^*$ and building just over
+a dozen successive derivatives
w.r.t.~the character $a$, one obtains a derivative regular expression
-with more than 9000 nodes (when viewed as a tree)
-even with simplification.
-\begin{figure}
+with millions of nodes (when viewed as a tree)
+even with simplification, which is not much better compared
+with the naive version without any simplifications:
+\begin{figure}[H]
+ \centering
\begin{tikzpicture}
\begin{axis}[
xlabel={$n$},
ylabel={size},
- legend entries={Naive Matcher},
+ legend entries={Simple-Minded Simp, Naive Matcher},
legend pos=north west,
legend cell align=left]
\addplot[red,mark=*, mark options={fill=white}] table {BetterWaterloo.data};
+\addplot[blue,mark=*, mark options={fill=white}] table {BetterWaterloo1.data};
\end{axis}
\end{tikzpicture}
\caption{Size of $(a^*\cdot a^*)^*$ against $\protect\underbrace{aa\ldots a}_\text{n \textit{a}s}$}