diff -r 1734bd5975a3 -r 4969ef817d92 ChengsongTanPhdThesis/Chapters/Inj.tex --- a/ChengsongTanPhdThesis/Chapters/Inj.tex Tue Aug 23 22:59:49 2022 +0100 +++ b/ChengsongTanPhdThesis/Chapters/Inj.tex Sat Aug 27 00:37:03 2022 +0100 @@ -1181,19 +1181,23 @@ simplifications arise. \section{A Case Requring More Aggressive Simplifications} For example, when starting with the regular -expression $(a^* \cdot a^*)^*$ and building a few successive derivatives (around 10) +expression $(a^* \cdot a^*)^*$ and building just over +a dozen successive derivatives w.r.t.~the character $a$, one obtains a derivative regular expression -with more than 9000 nodes (when viewed as a tree) -even with simplification. -\begin{figure} +with millions of nodes (when viewed as a tree) +even with simplification, which is not much better compared +with the naive version without any simplifications: +\begin{figure}[H] + \centering \begin{tikzpicture} \begin{axis}[ xlabel={$n$}, ylabel={size}, - legend entries={Naive Matcher}, + legend entries={Simple-Minded Simp, Naive Matcher}, legend pos=north west, legend cell align=left] \addplot[red,mark=*, mark options={fill=white}] table {BetterWaterloo.data}; +\addplot[blue,mark=*, mark options={fill=white}] table {BetterWaterloo1.data}; \end{axis} \end{tikzpicture} \caption{Size of $(a^*\cdot a^*)^*$ against $\protect\underbrace{aa\ldots a}_\text{n \textit{a}s}$}