--- a/thys3/Lexer.thy Sat Apr 30 00:50:08 2022 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,417 +0,0 @@
-
-theory Lexer
- imports PosixSpec
-begin
-
-section {* The Lexer Functions by Sulzmann and Lu (without simplification) *}
-
-fun
- mkeps :: "rexp \<Rightarrow> val"
-where
- "mkeps(ONE) = Void"
-| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)"
-| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))"
-| "mkeps(STAR r) = Stars []"
-
-fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val"
-where
- "injval (CH d) c Void = Char d"
-| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)"
-| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)"
-| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2"
-| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2"
-| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)"
-| "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)"
-
-fun
- lexer :: "rexp \<Rightarrow> string \<Rightarrow> val option"
-where
- "lexer r [] = (if nullable r then Some(mkeps r) else None)"
-| "lexer r (c#s) = (case (lexer (der c r) s) of
- None \<Rightarrow> None
- | Some(v) \<Rightarrow> Some(injval r c v))"
-
-
-
-section {* Mkeps, Injval Properties *}
-
-lemma mkeps_nullable:
- assumes "nullable(r)"
- shows "\<Turnstile> mkeps r : r"
-using assms
-by (induct rule: nullable.induct)
- (auto intro: Prf.intros)
-
-lemma mkeps_flat:
- assumes "nullable(r)"
- shows "flat (mkeps r) = []"
-using assms
-by (induct rule: nullable.induct) (auto)
-
-lemma Prf_injval_flat:
- assumes "\<Turnstile> v : der c r"
- shows "flat (injval r c v) = c # (flat v)"
-using assms
-apply(induct c r arbitrary: v rule: der.induct)
-apply(auto elim!: Prf_elims intro: mkeps_flat split: if_splits)
-done
-
-lemma Prf_injval:
- assumes "\<Turnstile> v : der c r"
- shows "\<Turnstile> (injval r c v) : r"
-using assms
-apply(induct r arbitrary: c v rule: rexp.induct)
-apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits)
-apply(simp add: Prf_injval_flat)
-done
-
-
-
-text {*
- Mkeps and injval produce, or preserve, Posix values.
-*}
-
-lemma Posix_mkeps:
- assumes "nullable r"
- shows "[] \<in> r \<rightarrow> mkeps r"
-using assms
-apply(induct r rule: nullable.induct)
-apply(auto intro: Posix.intros simp add: nullable_correctness Sequ_def)
-apply(subst append.simps(1)[symmetric])
-apply(rule Posix.intros)
-apply(auto)
-done
-
-lemma Posix_injval:
- assumes "s \<in> (der c r) \<rightarrow> v"
- shows "(c # s) \<in> r \<rightarrow> (injval r c v)"
-using assms
-proof(induct r arbitrary: s v rule: rexp.induct)
- case ZERO
- have "s \<in> der c ZERO \<rightarrow> v" by fact
- then have "s \<in> ZERO \<rightarrow> v" by simp
- then have "False" by cases
- then show "(c # s) \<in> ZERO \<rightarrow> (injval ZERO c v)" by simp
-next
- case ONE
- have "s \<in> der c ONE \<rightarrow> v" by fact
- then have "s \<in> ZERO \<rightarrow> v" by simp
- then have "False" by cases
- then show "(c # s) \<in> ONE \<rightarrow> (injval ONE c v)" by simp
-next
- case (CH d)
- consider (eq) "c = d" | (ineq) "c \<noteq> d" by blast
- then show "(c # s) \<in> (CH d) \<rightarrow> (injval (CH d) c v)"
- proof (cases)
- case eq
- have "s \<in> der c (CH d) \<rightarrow> v" by fact
- then have "s \<in> ONE \<rightarrow> v" using eq by simp
- then have eqs: "s = [] \<and> v = Void" by cases simp
- show "(c # s) \<in> CH d \<rightarrow> injval (CH d) c v" using eq eqs
- by (auto intro: Posix.intros)
- next
- case ineq
- have "s \<in> der c (CH d) \<rightarrow> v" by fact
- then have "s \<in> ZERO \<rightarrow> v" using ineq by simp
- then have "False" by cases
- then show "(c # s) \<in> CH d \<rightarrow> injval (CH d) c v" by simp
- qed
-next
- case (ALT r1 r2)
- have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
- have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
- have "s \<in> der c (ALT r1 r2) \<rightarrow> v" by fact
- then have "s \<in> ALT (der c r1) (der c r2) \<rightarrow> v" by simp
- then consider (left) v' where "v = Left v'" "s \<in> der c r1 \<rightarrow> v'"
- | (right) v' where "v = Right v'" "s \<notin> L (der c r1)" "s \<in> der c r2 \<rightarrow> v'"
- by cases auto
- then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v"
- proof (cases)
- case left
- have "s \<in> der c r1 \<rightarrow> v'" by fact
- then have "(c # s) \<in> r1 \<rightarrow> injval r1 c v'" using IH1 by simp
- then have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Left v')" by (auto intro: Posix.intros)
- then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using left by simp
- next
- case right
- have "s \<notin> L (der c r1)" by fact
- then have "c # s \<notin> L r1" by (simp add: der_correctness Der_def)
- moreover
- have "s \<in> der c r2 \<rightarrow> v'" by fact
- then have "(c # s) \<in> r2 \<rightarrow> injval r2 c v'" using IH2 by simp
- ultimately have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Right v')"
- by (auto intro: Posix.intros)
- then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using right by simp
- qed
-next
- case (SEQ r1 r2)
- have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
- have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
- have "s \<in> der c (SEQ r1 r2) \<rightarrow> v" by fact
- then consider
- (left_nullable) v1 v2 s1 s2 where
- "v = Left (Seq v1 v2)" "s = s1 @ s2"
- "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "nullable r1"
- "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
- | (right_nullable) v1 s1 s2 where
- "v = Right v1" "s = s1 @ s2"
- "s \<in> der c r2 \<rightarrow> v1" "nullable r1" "s1 @ s2 \<notin> L (SEQ (der c r1) r2)"
- | (not_nullable) v1 v2 s1 s2 where
- "v = Seq v1 v2" "s = s1 @ s2"
- "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "\<not>nullable r1"
- "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
- by (force split: if_splits elim!: Posix_elims simp add: Sequ_def der_correctness Der_def)
- then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v"
- proof (cases)
- case left_nullable
- have "s1 \<in> der c r1 \<rightarrow> v1" by fact
- then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
- moreover
- have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
- then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
- ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using left_nullable by (rule_tac Posix.intros)
- then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using left_nullable by simp
- next
- case right_nullable
- have "nullable r1" by fact
- then have "[] \<in> r1 \<rightarrow> (mkeps r1)" by (rule Posix_mkeps)
- moreover
- have "s \<in> der c r2 \<rightarrow> v1" by fact
- then have "(c # s) \<in> r2 \<rightarrow> (injval r2 c v1)" using IH2 by simp
- moreover
- have "s1 @ s2 \<notin> L (SEQ (der c r1) r2)" by fact
- then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = c # s \<and> [] @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" using right_nullable
- by(auto simp add: der_correctness Der_def append_eq_Cons_conv Sequ_def)
- ultimately have "([] @ (c # s)) \<in> SEQ r1 r2 \<rightarrow> Seq (mkeps r1) (injval r2 c v1)"
- by(rule Posix.intros)
- then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using right_nullable by simp
- next
- case not_nullable
- have "s1 \<in> der c r1 \<rightarrow> v1" by fact
- then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
- moreover
- have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
- then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
- ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using not_nullable
- by (rule_tac Posix.intros) (simp_all)
- then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using not_nullable by simp
- qed
-next
- case (STAR r)
- have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
- have "s \<in> der c (STAR r) \<rightarrow> v" by fact
- then consider
- (cons) v1 vs s1 s2 where
- "v = Seq v1 (Stars vs)" "s = s1 @ s2"
- "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (STAR r) \<rightarrow> (Stars vs)"
- "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))"
- apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
- apply(rotate_tac 3)
- apply(erule_tac Posix_elims(6))
- apply (simp add: Posix.intros(6))
- using Posix.intros(7) by blast
- then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v"
- proof (cases)
- case cons
- have "s1 \<in> der c r \<rightarrow> v1" by fact
- then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
- moreover
- have "s2 \<in> STAR r \<rightarrow> Stars vs" by fact
- moreover
- have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact
- then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
- then have "flat (injval r c v1) \<noteq> []" by simp
- moreover
- have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" by fact
- then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))"
- by (simp add: der_correctness Der_def)
- ultimately
- have "((c # s1) @ s2) \<in> STAR r \<rightarrow> Stars (injval r c v1 # vs)" by (rule Posix.intros)
- then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" using cons by(simp)
- qed
-qed
-
-
-section {* Lexer Correctness *}
-
-
-lemma lexer_correct_None:
- shows "s \<notin> L r \<longleftrightarrow> lexer r s = None"
- apply(induct s arbitrary: r)
- apply(simp)
- apply(simp add: nullable_correctness)
- apply(simp)
- apply(drule_tac x="der a r" in meta_spec)
- apply(auto)
- apply(auto simp add: der_correctness Der_def)
-done
-
-lemma lexer_correct_Some:
- shows "s \<in> L r \<longleftrightarrow> (\<exists>v. lexer r s = Some(v) \<and> s \<in> r \<rightarrow> v)"
- apply(induct s arbitrary : r)
- apply(simp only: lexer.simps)
- apply(simp)
- apply(simp add: nullable_correctness Posix_mkeps)
- apply(drule_tac x="der a r" in meta_spec)
- apply(simp (no_asm_use) add: der_correctness Der_def del: lexer.simps)
- apply(simp del: lexer.simps)
- apply(simp only: lexer.simps)
- apply(case_tac "lexer (der a r) s = None")
- apply(auto)[1]
- apply(simp)
- apply(erule exE)
- apply(simp)
- apply(rule iffI)
- apply(simp add: Posix_injval)
- apply(simp add: Posix1(1))
-done
-
-lemma lexer_correctness:
- shows "(lexer r s = Some v) \<longleftrightarrow> s \<in> r \<rightarrow> v"
- and "(lexer r s = None) \<longleftrightarrow> \<not>(\<exists>v. s \<in> r \<rightarrow> v)"
-using Posix1(1) Posix_determ lexer_correct_None lexer_correct_Some apply fastforce
-using Posix1(1) lexer_correct_None lexer_correct_Some by blast
-
-
-subsection {* A slight reformulation of the lexer algorithm using stacked functions*}
-
-fun flex :: "rexp \<Rightarrow> (val \<Rightarrow> val) => string \<Rightarrow> (val \<Rightarrow> val)"
- where
- "flex r f [] = f"
-| "flex r f (c#s) = flex (der c r) (\<lambda>v. f (injval r c v)) s"
-
-lemma flex_fun_apply:
- shows "g (flex r f s v) = flex r (g o f) s v"
- apply(induct s arbitrary: g f r v)
- apply(simp_all add: comp_def)
- by meson
-
-lemma flex_fun_apply2:
- shows "g (flex r id s v) = flex r g s v"
- by (simp add: flex_fun_apply)
-
-
-lemma flex_append:
- shows "flex r f (s1 @ s2) = flex (ders s1 r) (flex r f s1) s2"
- apply(induct s1 arbitrary: s2 r f)
- apply(simp_all)
- done
-
-lemma lexer_flex:
- shows "lexer r s = (if nullable (ders s r)
- then Some(flex r id s (mkeps (ders s r))) else None)"
- apply(induct s arbitrary: r)
- apply(simp_all add: flex_fun_apply)
- done
-
-lemma Posix_flex:
- assumes "s2 \<in> (ders s1 r) \<rightarrow> v"
- shows "(s1 @ s2) \<in> r \<rightarrow> flex r id s1 v"
- using assms
- apply(induct s1 arbitrary: r v s2)
- apply(simp)
- apply(simp)
- apply(drule_tac x="der a r" in meta_spec)
- apply(drule_tac x="v" in meta_spec)
- apply(drule_tac x="s2" in meta_spec)
- apply(simp)
- using Posix_injval
- apply(drule_tac Posix_injval)
- apply(subst (asm) (5) flex_fun_apply)
- apply(simp)
- done
-
-lemma injval_inj:
- assumes "\<Turnstile> a : (der c r)" "\<Turnstile> v : (der c r)" "injval r c a = injval r c v"
- shows "a = v"
- using assms
- apply(induct r arbitrary: a c v)
- apply(auto)
- using Prf_elims(1) apply blast
- using Prf_elims(1) apply blast
- apply(case_tac "c = x")
- apply(auto)
- using Prf_elims(4) apply auto[1]
- using Prf_elims(1) apply blast
- prefer 2
- apply (smt Prf_elims(3) injval.simps(2) injval.simps(3) val.distinct(25) val.inject(3) val.inject(4))
- apply(case_tac "nullable r1")
- apply(auto)
- apply(erule Prf_elims)
- apply(erule Prf_elims)
- apply(erule Prf_elims)
- apply(erule Prf_elims)
- apply(auto)
- apply (metis Prf_injval_flat list.distinct(1) mkeps_flat)
- apply(erule Prf_elims)
- apply(erule Prf_elims)
- apply(auto)
- using Prf_injval_flat mkeps_flat apply fastforce
- apply(erule Prf_elims)
- apply(erule Prf_elims)
- apply(auto)
- apply(erule Prf_elims)
- apply(erule Prf_elims)
- apply(auto)
- apply (smt Prf_elims(6) injval.simps(7) list.inject val.inject(5))
- by (smt Prf_elims(6) injval.simps(7) list.inject val.inject(5))
-
-
-
-lemma uu:
- assumes "(c # s) \<in> r \<rightarrow> injval r c v" "\<Turnstile> v : (der c r)"
- shows "s \<in> der c r \<rightarrow> v"
- using assms
- apply -
- apply(subgoal_tac "lexer r (c # s) = Some (injval r c v)")
- prefer 2
- using lexer_correctness(1) apply blast
- apply(simp add: )
- apply(case_tac "lexer (der c r) s")
- apply(simp)
- apply(simp)
- apply(case_tac "s \<in> der c r \<rightarrow> a")
- prefer 2
- apply (simp add: lexer_correctness(1))
- apply(subgoal_tac "\<Turnstile> a : (der c r)")
- prefer 2
- using Posix_Prf apply blast
- using injval_inj by blast
-
-
-lemma Posix_flex2:
- assumes "(s1 @ s2) \<in> r \<rightarrow> flex r id s1 v" "\<Turnstile> v : ders s1 r"
- shows "s2 \<in> (ders s1 r) \<rightarrow> v"
- using assms
- apply(induct s1 arbitrary: r v s2 rule: rev_induct)
- apply(simp)
- apply(simp)
- apply(drule_tac x="r" in meta_spec)
- apply(drule_tac x="injval (ders xs r) x v" in meta_spec)
- apply(drule_tac x="x#s2" in meta_spec)
- apply(simp add: flex_append ders_append)
- using Prf_injval uu by blast
-
-lemma Posix_flex3:
- assumes "s1 \<in> r \<rightarrow> flex r id s1 v" "\<Turnstile> v : ders s1 r"
- shows "[] \<in> (ders s1 r) \<rightarrow> v"
- using assms
- by (simp add: Posix_flex2)
-
-lemma flex_injval:
- shows "flex (der a r) (injval r a) s v = injval r a (flex (der a r) id s v)"
- by (simp add: flex_fun_apply)
-
-lemma Prf_flex:
- assumes "\<Turnstile> v : ders s r"
- shows "\<Turnstile> flex r id s v : r"
- using assms
- apply(induct s arbitrary: v r)
- apply(simp)
- apply(simp)
- by (simp add: Prf_injval flex_injval)
-
-
-unused_thms
-
-end
\ No newline at end of file