diff -r f493a20feeb3 -r 04b5e904a220 thys3/Lexer.thy --- a/thys3/Lexer.thy Sat Apr 30 00:50:08 2022 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,417 +0,0 @@ - -theory Lexer - imports PosixSpec -begin - -section {* The Lexer Functions by Sulzmann and Lu (without simplification) *} - -fun - mkeps :: "rexp \ val" -where - "mkeps(ONE) = Void" -| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)" -| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))" -| "mkeps(STAR r) = Stars []" - -fun injval :: "rexp \ char \ val \ val" -where - "injval (CH d) c Void = Char d" -| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)" -| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)" -| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2" -| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2" -| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)" -| "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" - -fun - lexer :: "rexp \ string \ val option" -where - "lexer r [] = (if nullable r then Some(mkeps r) else None)" -| "lexer r (c#s) = (case (lexer (der c r) s) of - None \ None - | Some(v) \ Some(injval r c v))" - - - -section {* Mkeps, Injval Properties *} - -lemma mkeps_nullable: - assumes "nullable(r)" - shows "\ mkeps r : r" -using assms -by (induct rule: nullable.induct) - (auto intro: Prf.intros) - -lemma mkeps_flat: - assumes "nullable(r)" - shows "flat (mkeps r) = []" -using assms -by (induct rule: nullable.induct) (auto) - -lemma Prf_injval_flat: - assumes "\ v : der c r" - shows "flat (injval r c v) = c # (flat v)" -using assms -apply(induct c r arbitrary: v rule: der.induct) -apply(auto elim!: Prf_elims intro: mkeps_flat split: if_splits) -done - -lemma Prf_injval: - assumes "\ v : der c r" - shows "\ (injval r c v) : r" -using assms -apply(induct r arbitrary: c v rule: rexp.induct) -apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits) -apply(simp add: Prf_injval_flat) -done - - - -text {* - Mkeps and injval produce, or preserve, Posix values. -*} - -lemma Posix_mkeps: - assumes "nullable r" - shows "[] \ r \ mkeps r" -using assms -apply(induct r rule: nullable.induct) -apply(auto intro: Posix.intros simp add: nullable_correctness Sequ_def) -apply(subst append.simps(1)[symmetric]) -apply(rule Posix.intros) -apply(auto) -done - -lemma Posix_injval: - assumes "s \ (der c r) \ v" - shows "(c # s) \ r \ (injval r c v)" -using assms -proof(induct r arbitrary: s v rule: rexp.induct) - case ZERO - have "s \ der c ZERO \ v" by fact - then have "s \ ZERO \ v" by simp - then have "False" by cases - then show "(c # s) \ ZERO \ (injval ZERO c v)" by simp -next - case ONE - have "s \ der c ONE \ v" by fact - then have "s \ ZERO \ v" by simp - then have "False" by cases - then show "(c # s) \ ONE \ (injval ONE c v)" by simp -next - case (CH d) - consider (eq) "c = d" | (ineq) "c \ d" by blast - then show "(c # s) \ (CH d) \ (injval (CH d) c v)" - proof (cases) - case eq - have "s \ der c (CH d) \ v" by fact - then have "s \ ONE \ v" using eq by simp - then have eqs: "s = [] \ v = Void" by cases simp - show "(c # s) \ CH d \ injval (CH d) c v" using eq eqs - by (auto intro: Posix.intros) - next - case ineq - have "s \ der c (CH d) \ v" by fact - then have "s \ ZERO \ v" using ineq by simp - then have "False" by cases - then show "(c # s) \ CH d \ injval (CH d) c v" by simp - qed -next - case (ALT r1 r2) - have IH1: "\s v. s \ der c r1 \ v \ (c # s) \ r1 \ injval r1 c v" by fact - have IH2: "\s v. s \ der c r2 \ v \ (c # s) \ r2 \ injval r2 c v" by fact - have "s \ der c (ALT r1 r2) \ v" by fact - then have "s \ ALT (der c r1) (der c r2) \ v" by simp - then consider (left) v' where "v = Left v'" "s \ der c r1 \ v'" - | (right) v' where "v = Right v'" "s \ L (der c r1)" "s \ der c r2 \ v'" - by cases auto - then show "(c # s) \ ALT r1 r2 \ injval (ALT r1 r2) c v" - proof (cases) - case left - have "s \ der c r1 \ v'" by fact - then have "(c # s) \ r1 \ injval r1 c v'" using IH1 by simp - then have "(c # s) \ ALT r1 r2 \ injval (ALT r1 r2) c (Left v')" by (auto intro: Posix.intros) - then show "(c # s) \ ALT r1 r2 \ injval (ALT r1 r2) c v" using left by simp - next - case right - have "s \ L (der c r1)" by fact - then have "c # s \ L r1" by (simp add: der_correctness Der_def) - moreover - have "s \ der c r2 \ v'" by fact - then have "(c # s) \ r2 \ injval r2 c v'" using IH2 by simp - ultimately have "(c # s) \ ALT r1 r2 \ injval (ALT r1 r2) c (Right v')" - by (auto intro: Posix.intros) - then show "(c # s) \ ALT r1 r2 \ injval (ALT r1 r2) c v" using right by simp - qed -next - case (SEQ r1 r2) - have IH1: "\s v. s \ der c r1 \ v \ (c # s) \ r1 \ injval r1 c v" by fact - have IH2: "\s v. s \ der c r2 \ v \ (c # s) \ r2 \ injval r2 c v" by fact - have "s \ der c (SEQ r1 r2) \ v" by fact - then consider - (left_nullable) v1 v2 s1 s2 where - "v = Left (Seq v1 v2)" "s = s1 @ s2" - "s1 \ der c r1 \ v1" "s2 \ r2 \ v2" "nullable r1" - "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L (der c r1) \ s\<^sub>4 \ L r2)" - | (right_nullable) v1 s1 s2 where - "v = Right v1" "s = s1 @ s2" - "s \ der c r2 \ v1" "nullable r1" "s1 @ s2 \ L (SEQ (der c r1) r2)" - | (not_nullable) v1 v2 s1 s2 where - "v = Seq v1 v2" "s = s1 @ s2" - "s1 \ der c r1 \ v1" "s2 \ r2 \ v2" "\nullable r1" - "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L (der c r1) \ s\<^sub>4 \ L r2)" - by (force split: if_splits elim!: Posix_elims simp add: Sequ_def der_correctness Der_def) - then show "(c # s) \ SEQ r1 r2 \ injval (SEQ r1 r2) c v" - proof (cases) - case left_nullable - have "s1 \ der c r1 \ v1" by fact - then have "(c # s1) \ r1 \ injval r1 c v1" using IH1 by simp - moreover - have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L (der c r1) \ s\<^sub>4 \ L r2)" by fact - then have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (c # s1) @ s\<^sub>3 \ L r1 \ s\<^sub>4 \ L r2)" by (simp add: der_correctness Der_def) - ultimately have "((c # s1) @ s2) \ SEQ r1 r2 \ Seq (injval r1 c v1) v2" using left_nullable by (rule_tac Posix.intros) - then show "(c # s) \ SEQ r1 r2 \ injval (SEQ r1 r2) c v" using left_nullable by simp - next - case right_nullable - have "nullable r1" by fact - then have "[] \ r1 \ (mkeps r1)" by (rule Posix_mkeps) - moreover - have "s \ der c r2 \ v1" by fact - then have "(c # s) \ r2 \ (injval r2 c v1)" using IH2 by simp - moreover - have "s1 @ s2 \ L (SEQ (der c r1) r2)" by fact - then have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = c # s \ [] @ s\<^sub>3 \ L r1 \ s\<^sub>4 \ L r2)" using right_nullable - by(auto simp add: der_correctness Der_def append_eq_Cons_conv Sequ_def) - ultimately have "([] @ (c # s)) \ SEQ r1 r2 \ Seq (mkeps r1) (injval r2 c v1)" - by(rule Posix.intros) - then show "(c # s) \ SEQ r1 r2 \ injval (SEQ r1 r2) c v" using right_nullable by simp - next - case not_nullable - have "s1 \ der c r1 \ v1" by fact - then have "(c # s1) \ r1 \ injval r1 c v1" using IH1 by simp - moreover - have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L (der c r1) \ s\<^sub>4 \ L r2)" by fact - then have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (c # s1) @ s\<^sub>3 \ L r1 \ s\<^sub>4 \ L r2)" by (simp add: der_correctness Der_def) - ultimately have "((c # s1) @ s2) \ SEQ r1 r2 \ Seq (injval r1 c v1) v2" using not_nullable - by (rule_tac Posix.intros) (simp_all) - then show "(c # s) \ SEQ r1 r2 \ injval (SEQ r1 r2) c v" using not_nullable by simp - qed -next - case (STAR r) - have IH: "\s v. s \ der c r \ v \ (c # s) \ r \ injval r c v" by fact - have "s \ der c (STAR r) \ v" by fact - then consider - (cons) v1 vs s1 s2 where - "v = Seq v1 (Stars vs)" "s = s1 @ s2" - "s1 \ der c r \ v1" "s2 \ (STAR r) \ (Stars vs)" - "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L (der c r) \ s\<^sub>4 \ L (STAR r))" - apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros) - apply(rotate_tac 3) - apply(erule_tac Posix_elims(6)) - apply (simp add: Posix.intros(6)) - using Posix.intros(7) by blast - then show "(c # s) \ STAR r \ injval (STAR r) c v" - proof (cases) - case cons - have "s1 \ der c r \ v1" by fact - then have "(c # s1) \ r \ injval r c v1" using IH by simp - moreover - have "s2 \ STAR r \ Stars vs" by fact - moreover - have "(c # s1) \ r \ injval r c v1" by fact - then have "flat (injval r c v1) = (c # s1)" by (rule Posix1) - then have "flat (injval r c v1) \ []" by simp - moreover - have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L (der c r) \ s\<^sub>4 \ L (STAR r))" by fact - then have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (c # s1) @ s\<^sub>3 \ L r \ s\<^sub>4 \ L (STAR r))" - by (simp add: der_correctness Der_def) - ultimately - have "((c # s1) @ s2) \ STAR r \ Stars (injval r c v1 # vs)" by (rule Posix.intros) - then show "(c # s) \ STAR r \ injval (STAR r) c v" using cons by(simp) - qed -qed - - -section {* Lexer Correctness *} - - -lemma lexer_correct_None: - shows "s \ L r \ lexer r s = None" - apply(induct s arbitrary: r) - apply(simp) - apply(simp add: nullable_correctness) - apply(simp) - apply(drule_tac x="der a r" in meta_spec) - apply(auto) - apply(auto simp add: der_correctness Der_def) -done - -lemma lexer_correct_Some: - shows "s \ L r \ (\v. lexer r s = Some(v) \ s \ r \ v)" - apply(induct s arbitrary : r) - apply(simp only: lexer.simps) - apply(simp) - apply(simp add: nullable_correctness Posix_mkeps) - apply(drule_tac x="der a r" in meta_spec) - apply(simp (no_asm_use) add: der_correctness Der_def del: lexer.simps) - apply(simp del: lexer.simps) - apply(simp only: lexer.simps) - apply(case_tac "lexer (der a r) s = None") - apply(auto)[1] - apply(simp) - apply(erule exE) - apply(simp) - apply(rule iffI) - apply(simp add: Posix_injval) - apply(simp add: Posix1(1)) -done - -lemma lexer_correctness: - shows "(lexer r s = Some v) \ s \ r \ v" - and "(lexer r s = None) \ \(\v. s \ r \ v)" -using Posix1(1) Posix_determ lexer_correct_None lexer_correct_Some apply fastforce -using Posix1(1) lexer_correct_None lexer_correct_Some by blast - - -subsection {* A slight reformulation of the lexer algorithm using stacked functions*} - -fun flex :: "rexp \ (val \ val) => string \ (val \ val)" - where - "flex r f [] = f" -| "flex r f (c#s) = flex (der c r) (\v. f (injval r c v)) s" - -lemma flex_fun_apply: - shows "g (flex r f s v) = flex r (g o f) s v" - apply(induct s arbitrary: g f r v) - apply(simp_all add: comp_def) - by meson - -lemma flex_fun_apply2: - shows "g (flex r id s v) = flex r g s v" - by (simp add: flex_fun_apply) - - -lemma flex_append: - shows "flex r f (s1 @ s2) = flex (ders s1 r) (flex r f s1) s2" - apply(induct s1 arbitrary: s2 r f) - apply(simp_all) - done - -lemma lexer_flex: - shows "lexer r s = (if nullable (ders s r) - then Some(flex r id s (mkeps (ders s r))) else None)" - apply(induct s arbitrary: r) - apply(simp_all add: flex_fun_apply) - done - -lemma Posix_flex: - assumes "s2 \ (ders s1 r) \ v" - shows "(s1 @ s2) \ r \ flex r id s1 v" - using assms - apply(induct s1 arbitrary: r v s2) - apply(simp) - apply(simp) - apply(drule_tac x="der a r" in meta_spec) - apply(drule_tac x="v" in meta_spec) - apply(drule_tac x="s2" in meta_spec) - apply(simp) - using Posix_injval - apply(drule_tac Posix_injval) - apply(subst (asm) (5) flex_fun_apply) - apply(simp) - done - -lemma injval_inj: - assumes "\ a : (der c r)" "\ v : (der c r)" "injval r c a = injval r c v" - shows "a = v" - using assms - apply(induct r arbitrary: a c v) - apply(auto) - using Prf_elims(1) apply blast - using Prf_elims(1) apply blast - apply(case_tac "c = x") - apply(auto) - using Prf_elims(4) apply auto[1] - using Prf_elims(1) apply blast - prefer 2 - apply (smt Prf_elims(3) injval.simps(2) injval.simps(3) val.distinct(25) val.inject(3) val.inject(4)) - apply(case_tac "nullable r1") - apply(auto) - apply(erule Prf_elims) - apply(erule Prf_elims) - apply(erule Prf_elims) - apply(erule Prf_elims) - apply(auto) - apply (metis Prf_injval_flat list.distinct(1) mkeps_flat) - apply(erule Prf_elims) - apply(erule Prf_elims) - apply(auto) - using Prf_injval_flat mkeps_flat apply fastforce - apply(erule Prf_elims) - apply(erule Prf_elims) - apply(auto) - apply(erule Prf_elims) - apply(erule Prf_elims) - apply(auto) - apply (smt Prf_elims(6) injval.simps(7) list.inject val.inject(5)) - by (smt Prf_elims(6) injval.simps(7) list.inject val.inject(5)) - - - -lemma uu: - assumes "(c # s) \ r \ injval r c v" "\ v : (der c r)" - shows "s \ der c r \ v" - using assms - apply - - apply(subgoal_tac "lexer r (c # s) = Some (injval r c v)") - prefer 2 - using lexer_correctness(1) apply blast - apply(simp add: ) - apply(case_tac "lexer (der c r) s") - apply(simp) - apply(simp) - apply(case_tac "s \ der c r \ a") - prefer 2 - apply (simp add: lexer_correctness(1)) - apply(subgoal_tac "\ a : (der c r)") - prefer 2 - using Posix_Prf apply blast - using injval_inj by blast - - -lemma Posix_flex2: - assumes "(s1 @ s2) \ r \ flex r id s1 v" "\ v : ders s1 r" - shows "s2 \ (ders s1 r) \ v" - using assms - apply(induct s1 arbitrary: r v s2 rule: rev_induct) - apply(simp) - apply(simp) - apply(drule_tac x="r" in meta_spec) - apply(drule_tac x="injval (ders xs r) x v" in meta_spec) - apply(drule_tac x="x#s2" in meta_spec) - apply(simp add: flex_append ders_append) - using Prf_injval uu by blast - -lemma Posix_flex3: - assumes "s1 \ r \ flex r id s1 v" "\ v : ders s1 r" - shows "[] \ (ders s1 r) \ v" - using assms - by (simp add: Posix_flex2) - -lemma flex_injval: - shows "flex (der a r) (injval r a) s v = injval r a (flex (der a r) id s v)" - by (simp add: flex_fun_apply) - -lemma Prf_flex: - assumes "\ v : ders s r" - shows "\ flex r id s v : r" - using assms - apply(induct s arbitrary: v r) - apply(simp) - apply(simp) - by (simp add: Prf_injval flex_injval) - - -unused_thms - -end \ No newline at end of file