|
1 |
|
2 theory Lexer |
|
3 imports Spec |
|
4 begin |
|
5 |
|
6 section {* The Lexer Functions by Sulzmann and Lu (without simplification) *} |
|
7 |
|
8 fun |
|
9 mkeps :: "rexp \<Rightarrow> val" |
|
10 where |
|
11 "mkeps(ONE) = Void" |
|
12 | "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)" |
|
13 | "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))" |
|
14 | "mkeps(STAR r) = Stars []" |
|
15 |
|
16 fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val" |
|
17 where |
|
18 "injval (CH d) c Void = Char d" |
|
19 | "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)" |
|
20 | "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)" |
|
21 | "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2" |
|
22 | "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2" |
|
23 | "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)" |
|
24 | "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" |
|
25 |
|
26 fun |
|
27 lexer :: "rexp \<Rightarrow> string \<Rightarrow> val option" |
|
28 where |
|
29 "lexer r [] = (if nullable r then Some(mkeps r) else None)" |
|
30 | "lexer r (c#s) = (case (lexer (der c r) s) of |
|
31 None \<Rightarrow> None |
|
32 | Some(v) \<Rightarrow> Some(injval r c v))" |
|
33 |
|
34 |
|
35 |
|
36 section {* Mkeps, Injval Properties *} |
|
37 |
|
38 lemma mkeps_nullable: |
|
39 assumes "nullable(r)" |
|
40 shows "\<Turnstile> mkeps r : r" |
|
41 using assms |
|
42 by (induct rule: nullable.induct) |
|
43 (auto intro: Prf.intros) |
|
44 |
|
45 lemma mkeps_flat: |
|
46 assumes "nullable(r)" |
|
47 shows "flat (mkeps r) = []" |
|
48 using assms |
|
49 by (induct rule: nullable.induct) (auto) |
|
50 |
|
51 lemma Prf_injval_flat: |
|
52 assumes "\<Turnstile> v : der c r" |
|
53 shows "flat (injval r c v) = c # (flat v)" |
|
54 using assms |
|
55 apply(induct c r arbitrary: v rule: der.induct) |
|
56 apply(auto elim!: Prf_elims intro: mkeps_flat split: if_splits) |
|
57 done |
|
58 |
|
59 lemma Prf_injval: |
|
60 assumes "\<Turnstile> v : der c r" |
|
61 shows "\<Turnstile> (injval r c v) : r" |
|
62 using assms |
|
63 apply(induct r arbitrary: c v rule: rexp.induct) |
|
64 apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits) |
|
65 apply(simp add: Prf_injval_flat) |
|
66 done |
|
67 |
|
68 |
|
69 |
|
70 text {* |
|
71 Mkeps and injval produce, or preserve, Posix values. |
|
72 *} |
|
73 |
|
74 lemma Posix_mkeps: |
|
75 assumes "nullable r" |
|
76 shows "[] \<in> r \<rightarrow> mkeps r" |
|
77 using assms |
|
78 apply(induct r rule: nullable.induct) |
|
79 apply(auto intro: Posix.intros simp add: nullable_correctness Sequ_def) |
|
80 apply(subst append.simps(1)[symmetric]) |
|
81 apply(rule Posix.intros) |
|
82 apply(auto) |
|
83 done |
|
84 |
|
85 lemma Posix_injval: |
|
86 assumes "s \<in> (der c r) \<rightarrow> v" |
|
87 shows "(c # s) \<in> r \<rightarrow> (injval r c v)" |
|
88 using assms |
|
89 proof(induct r arbitrary: s v rule: rexp.induct) |
|
90 case ZERO |
|
91 have "s \<in> der c ZERO \<rightarrow> v" by fact |
|
92 then have "s \<in> ZERO \<rightarrow> v" by simp |
|
93 then have "False" by cases |
|
94 then show "(c # s) \<in> ZERO \<rightarrow> (injval ZERO c v)" by simp |
|
95 next |
|
96 case ONE |
|
97 have "s \<in> der c ONE \<rightarrow> v" by fact |
|
98 then have "s \<in> ZERO \<rightarrow> v" by simp |
|
99 then have "False" by cases |
|
100 then show "(c # s) \<in> ONE \<rightarrow> (injval ONE c v)" by simp |
|
101 next |
|
102 case (CH d) |
|
103 consider (eq) "c = d" | (ineq) "c \<noteq> d" by blast |
|
104 then show "(c # s) \<in> (CH d) \<rightarrow> (injval (CH d) c v)" |
|
105 proof (cases) |
|
106 case eq |
|
107 have "s \<in> der c (CH d) \<rightarrow> v" by fact |
|
108 then have "s \<in> ONE \<rightarrow> v" using eq by simp |
|
109 then have eqs: "s = [] \<and> v = Void" by cases simp |
|
110 show "(c # s) \<in> CH d \<rightarrow> injval (CH d) c v" using eq eqs |
|
111 by (auto intro: Posix.intros) |
|
112 next |
|
113 case ineq |
|
114 have "s \<in> der c (CH d) \<rightarrow> v" by fact |
|
115 then have "s \<in> ZERO \<rightarrow> v" using ineq by simp |
|
116 then have "False" by cases |
|
117 then show "(c # s) \<in> CH d \<rightarrow> injval (CH d) c v" by simp |
|
118 qed |
|
119 next |
|
120 case (ALT r1 r2) |
|
121 have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact |
|
122 have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact |
|
123 have "s \<in> der c (ALT r1 r2) \<rightarrow> v" by fact |
|
124 then have "s \<in> ALT (der c r1) (der c r2) \<rightarrow> v" by simp |
|
125 then consider (left) v' where "v = Left v'" "s \<in> der c r1 \<rightarrow> v'" |
|
126 | (right) v' where "v = Right v'" "s \<notin> L (der c r1)" "s \<in> der c r2 \<rightarrow> v'" |
|
127 by cases auto |
|
128 then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" |
|
129 proof (cases) |
|
130 case left |
|
131 have "s \<in> der c r1 \<rightarrow> v'" by fact |
|
132 then have "(c # s) \<in> r1 \<rightarrow> injval r1 c v'" using IH1 by simp |
|
133 then have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Left v')" by (auto intro: Posix.intros) |
|
134 then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using left by simp |
|
135 next |
|
136 case right |
|
137 have "s \<notin> L (der c r1)" by fact |
|
138 then have "c # s \<notin> L r1" by (simp add: der_correctness Der_def) |
|
139 moreover |
|
140 have "s \<in> der c r2 \<rightarrow> v'" by fact |
|
141 then have "(c # s) \<in> r2 \<rightarrow> injval r2 c v'" using IH2 by simp |
|
142 ultimately have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Right v')" |
|
143 by (auto intro: Posix.intros) |
|
144 then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using right by simp |
|
145 qed |
|
146 next |
|
147 case (SEQ r1 r2) |
|
148 have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact |
|
149 have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact |
|
150 have "s \<in> der c (SEQ r1 r2) \<rightarrow> v" by fact |
|
151 then consider |
|
152 (left_nullable) v1 v2 s1 s2 where |
|
153 "v = Left (Seq v1 v2)" "s = s1 @ s2" |
|
154 "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "nullable r1" |
|
155 "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" |
|
156 | (right_nullable) v1 s1 s2 where |
|
157 "v = Right v1" "s = s1 @ s2" |
|
158 "s \<in> der c r2 \<rightarrow> v1" "nullable r1" "s1 @ s2 \<notin> L (SEQ (der c r1) r2)" |
|
159 | (not_nullable) v1 v2 s1 s2 where |
|
160 "v = Seq v1 v2" "s = s1 @ s2" |
|
161 "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "\<not>nullable r1" |
|
162 "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" |
|
163 by (force split: if_splits elim!: Posix_elims simp add: Sequ_def der_correctness Der_def) |
|
164 then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" |
|
165 proof (cases) |
|
166 case left_nullable |
|
167 have "s1 \<in> der c r1 \<rightarrow> v1" by fact |
|
168 then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp |
|
169 moreover |
|
170 have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact |
|
171 then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def) |
|
172 ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using left_nullable by (rule_tac Posix.intros) |
|
173 then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using left_nullable by simp |
|
174 next |
|
175 case right_nullable |
|
176 have "nullable r1" by fact |
|
177 then have "[] \<in> r1 \<rightarrow> (mkeps r1)" by (rule Posix_mkeps) |
|
178 moreover |
|
179 have "s \<in> der c r2 \<rightarrow> v1" by fact |
|
180 then have "(c # s) \<in> r2 \<rightarrow> (injval r2 c v1)" using IH2 by simp |
|
181 moreover |
|
182 have "s1 @ s2 \<notin> L (SEQ (der c r1) r2)" by fact |
|
183 then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = c # s \<and> [] @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" using right_nullable |
|
184 by(auto simp add: der_correctness Der_def append_eq_Cons_conv Sequ_def) |
|
185 ultimately have "([] @ (c # s)) \<in> SEQ r1 r2 \<rightarrow> Seq (mkeps r1) (injval r2 c v1)" |
|
186 by(rule Posix.intros) |
|
187 then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using right_nullable by simp |
|
188 next |
|
189 case not_nullable |
|
190 have "s1 \<in> der c r1 \<rightarrow> v1" by fact |
|
191 then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp |
|
192 moreover |
|
193 have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact |
|
194 then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def) |
|
195 ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using not_nullable |
|
196 by (rule_tac Posix.intros) (simp_all) |
|
197 then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using not_nullable by simp |
|
198 qed |
|
199 next |
|
200 case (STAR r) |
|
201 have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact |
|
202 have "s \<in> der c (STAR r) \<rightarrow> v" by fact |
|
203 then consider |
|
204 (cons) v1 vs s1 s2 where |
|
205 "v = Seq v1 (Stars vs)" "s = s1 @ s2" |
|
206 "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (STAR r) \<rightarrow> (Stars vs)" |
|
207 "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" |
|
208 apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros) |
|
209 apply(rotate_tac 3) |
|
210 apply(erule_tac Posix_elims(6)) |
|
211 apply (simp add: Posix.intros(6)) |
|
212 using Posix.intros(7) by blast |
|
213 then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" |
|
214 proof (cases) |
|
215 case cons |
|
216 have "s1 \<in> der c r \<rightarrow> v1" by fact |
|
217 then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp |
|
218 moreover |
|
219 have "s2 \<in> STAR r \<rightarrow> Stars vs" by fact |
|
220 moreover |
|
221 have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact |
|
222 then have "flat (injval r c v1) = (c # s1)" by (rule Posix1) |
|
223 then have "flat (injval r c v1) \<noteq> []" by simp |
|
224 moreover |
|
225 have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" by fact |
|
226 then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" |
|
227 by (simp add: der_correctness Der_def) |
|
228 ultimately |
|
229 have "((c # s1) @ s2) \<in> STAR r \<rightarrow> Stars (injval r c v1 # vs)" by (rule Posix.intros) |
|
230 then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" using cons by(simp) |
|
231 qed |
|
232 qed |
|
233 |
|
234 |
|
235 section {* Lexer Correctness *} |
|
236 |
|
237 |
|
238 lemma lexer_correct_None: |
|
239 shows "s \<notin> L r \<longleftrightarrow> lexer r s = None" |
|
240 apply(induct s arbitrary: r) |
|
241 apply(simp) |
|
242 apply(simp add: nullable_correctness) |
|
243 apply(simp) |
|
244 apply(drule_tac x="der a r" in meta_spec) |
|
245 apply(auto) |
|
246 apply(auto simp add: der_correctness Der_def) |
|
247 done |
|
248 |
|
249 lemma lexer_correct_Some: |
|
250 shows "s \<in> L r \<longleftrightarrow> (\<exists>v. lexer r s = Some(v) \<and> s \<in> r \<rightarrow> v)" |
|
251 apply(induct s arbitrary : r) |
|
252 apply(simp only: lexer.simps) |
|
253 apply(simp) |
|
254 apply(simp add: nullable_correctness Posix_mkeps) |
|
255 apply(drule_tac x="der a r" in meta_spec) |
|
256 apply(simp (no_asm_use) add: der_correctness Der_def del: lexer.simps) |
|
257 apply(simp del: lexer.simps) |
|
258 apply(simp only: lexer.simps) |
|
259 apply(case_tac "lexer (der a r) s = None") |
|
260 apply(auto)[1] |
|
261 apply(simp) |
|
262 apply(erule exE) |
|
263 apply(simp) |
|
264 apply(rule iffI) |
|
265 apply(simp add: Posix_injval) |
|
266 apply(simp add: Posix1(1)) |
|
267 done |
|
268 |
|
269 lemma lexer_correctness: |
|
270 shows "(lexer r s = Some v) \<longleftrightarrow> s \<in> r \<rightarrow> v" |
|
271 and "(lexer r s = None) \<longleftrightarrow> \<not>(\<exists>v. s \<in> r \<rightarrow> v)" |
|
272 using Posix1(1) Posix_determ lexer_correct_None lexer_correct_Some apply fastforce |
|
273 using Posix1(1) lexer_correct_None lexer_correct_Some by blast |
|
274 |
|
275 |
|
276 subsection {* A slight reformulation of the lexer algorithm using stacked functions*} |
|
277 |
|
278 fun flex :: "rexp \<Rightarrow> (val \<Rightarrow> val) => string \<Rightarrow> (val \<Rightarrow> val)" |
|
279 where |
|
280 "flex r f [] = f" |
|
281 | "flex r f (c#s) = flex (der c r) (\<lambda>v. f (injval r c v)) s" |
|
282 |
|
283 lemma flex_fun_apply: |
|
284 shows "g (flex r f s v) = flex r (g o f) s v" |
|
285 apply(induct s arbitrary: g f r v) |
|
286 apply(simp_all add: comp_def) |
|
287 by meson |
|
288 |
|
289 lemma flex_fun_apply2: |
|
290 shows "g (flex r id s v) = flex r g s v" |
|
291 by (simp add: flex_fun_apply) |
|
292 |
|
293 |
|
294 lemma flex_append: |
|
295 shows "flex r f (s1 @ s2) = flex (ders s1 r) (flex r f s1) s2" |
|
296 apply(induct s1 arbitrary: s2 r f) |
|
297 apply(simp_all) |
|
298 done |
|
299 |
|
300 lemma lexer_flex: |
|
301 shows "lexer r s = (if nullable (ders s r) |
|
302 then Some(flex r id s (mkeps (ders s r))) else None)" |
|
303 apply(induct s arbitrary: r) |
|
304 apply(simp_all add: flex_fun_apply) |
|
305 done |
|
306 |
|
307 lemma Posix_flex: |
|
308 assumes "s2 \<in> (ders s1 r) \<rightarrow> v" |
|
309 shows "(s1 @ s2) \<in> r \<rightarrow> flex r id s1 v" |
|
310 using assms |
|
311 apply(induct s1 arbitrary: r v s2) |
|
312 apply(simp) |
|
313 apply(simp) |
|
314 apply(drule_tac x="der a r" in meta_spec) |
|
315 apply(drule_tac x="v" in meta_spec) |
|
316 apply(drule_tac x="s2" in meta_spec) |
|
317 apply(simp) |
|
318 using Posix_injval |
|
319 apply(drule_tac Posix_injval) |
|
320 apply(subst (asm) (5) flex_fun_apply) |
|
321 apply(simp) |
|
322 done |
|
323 |
|
324 lemma injval_inj: |
|
325 assumes "\<Turnstile> a : (der c r)" "\<Turnstile> v : (der c r)" "injval r c a = injval r c v" |
|
326 shows "a = v" |
|
327 using assms |
|
328 apply(induct r arbitrary: a c v) |
|
329 apply(auto) |
|
330 using Prf_elims(1) apply blast |
|
331 using Prf_elims(1) apply blast |
|
332 apply(case_tac "c = x") |
|
333 apply(auto) |
|
334 using Prf_elims(4) apply auto[1] |
|
335 using Prf_elims(1) apply blast |
|
336 prefer 2 |
|
337 apply (smt Prf_elims(3) injval.simps(2) injval.simps(3) val.distinct(25) val.inject(3) val.inject(4)) |
|
338 apply(case_tac "nullable r1") |
|
339 apply(auto) |
|
340 apply(erule Prf_elims) |
|
341 apply(erule Prf_elims) |
|
342 apply(erule Prf_elims) |
|
343 apply(erule Prf_elims) |
|
344 apply(auto) |
|
345 apply (metis Prf_injval_flat list.distinct(1) mkeps_flat) |
|
346 apply(erule Prf_elims) |
|
347 apply(erule Prf_elims) |
|
348 apply(auto) |
|
349 using Prf_injval_flat mkeps_flat apply fastforce |
|
350 apply(erule Prf_elims) |
|
351 apply(erule Prf_elims) |
|
352 apply(auto) |
|
353 apply(erule Prf_elims) |
|
354 apply(erule Prf_elims) |
|
355 apply(auto) |
|
356 apply (smt Prf_elims(6) injval.simps(7) list.inject val.inject(5)) |
|
357 by (smt Prf_elims(6) injval.simps(7) list.inject val.inject(5)) |
|
358 |
|
359 |
|
360 |
|
361 lemma uu: |
|
362 assumes "(c # s) \<in> r \<rightarrow> injval r c v" "\<Turnstile> v : (der c r)" |
|
363 shows "s \<in> der c r \<rightarrow> v" |
|
364 using assms |
|
365 apply - |
|
366 apply(subgoal_tac "lexer r (c # s) = Some (injval r c v)") |
|
367 prefer 2 |
|
368 using lexer_correctness(1) apply blast |
|
369 apply(simp add: ) |
|
370 apply(case_tac "lexer (der c r) s") |
|
371 apply(simp) |
|
372 apply(simp) |
|
373 apply(case_tac "s \<in> der c r \<rightarrow> a") |
|
374 prefer 2 |
|
375 apply (simp add: lexer_correctness(1)) |
|
376 apply(subgoal_tac "\<Turnstile> a : (der c r)") |
|
377 prefer 2 |
|
378 using Posix_Prf apply blast |
|
379 using injval_inj by blast |
|
380 |
|
381 |
|
382 lemma Posix_flex2: |
|
383 assumes "(s1 @ s2) \<in> r \<rightarrow> flex r id s1 v" "\<Turnstile> v : ders s1 r" |
|
384 shows "s2 \<in> (ders s1 r) \<rightarrow> v" |
|
385 using assms |
|
386 apply(induct s1 arbitrary: r v s2 rule: rev_induct) |
|
387 apply(simp) |
|
388 apply(simp) |
|
389 apply(drule_tac x="r" in meta_spec) |
|
390 apply(drule_tac x="injval (ders xs r) x v" in meta_spec) |
|
391 apply(drule_tac x="x#s2" in meta_spec) |
|
392 apply(simp add: flex_append ders_append) |
|
393 using Prf_injval uu by blast |
|
394 |
|
395 lemma Posix_flex3: |
|
396 assumes "s1 \<in> r \<rightarrow> flex r id s1 v" "\<Turnstile> v : ders s1 r" |
|
397 shows "[] \<in> (ders s1 r) \<rightarrow> v" |
|
398 using assms |
|
399 by (simp add: Posix_flex2) |
|
400 |
|
401 lemma flex_injval: |
|
402 shows "flex (der a r) (injval r a) s v = injval r a (flex (der a r) id s v)" |
|
403 by (simp add: flex_fun_apply) |
|
404 |
|
405 lemma Prf_flex: |
|
406 assumes "\<Turnstile> v : ders s r" |
|
407 shows "\<Turnstile> flex r id s v : r" |
|
408 using assms |
|
409 apply(induct s arbitrary: v r) |
|
410 apply(simp) |
|
411 apply(simp) |
|
412 by (simp add: Prf_injval flex_injval) |
|
413 |
|
414 |
|
415 end |