thys2/Lexer.thy
changeset 365 ec5e4fe4cc70
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/Lexer.thy	Sun Oct 10 18:35:21 2021 +0100
@@ -0,0 +1,415 @@
+   
+theory Lexer
+  imports Spec 
+begin
+
+section {* The Lexer Functions by Sulzmann and Lu  (without simplification) *}
+
+fun 
+  mkeps :: "rexp \<Rightarrow> val"
+where
+  "mkeps(ONE) = Void"
+| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)"
+| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))"
+| "mkeps(STAR r) = Stars []"
+
+fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val"
+where
+  "injval (CH d) c Void = Char d"
+| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)"
+| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)"
+| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2"
+| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2"
+| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)"
+| "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 
+
+fun 
+  lexer :: "rexp \<Rightarrow> string \<Rightarrow> val option"
+where
+  "lexer r [] = (if nullable r then Some(mkeps r) else None)"
+| "lexer r (c#s) = (case (lexer (der c r) s) of  
+                    None \<Rightarrow> None
+                  | Some(v) \<Rightarrow> Some(injval r c v))"
+
+
+
+section {* Mkeps, Injval Properties *}
+
+lemma mkeps_nullable:
+  assumes "nullable(r)" 
+  shows "\<Turnstile> mkeps r : r"
+using assms
+by (induct rule: nullable.induct) 
+   (auto intro: Prf.intros)
+
+lemma mkeps_flat:
+  assumes "nullable(r)" 
+  shows "flat (mkeps r) = []"
+using assms
+by (induct rule: nullable.induct) (auto)
+
+lemma Prf_injval_flat:
+  assumes "\<Turnstile> v : der c r" 
+  shows "flat (injval r c v) = c # (flat v)"
+using assms
+apply(induct c r arbitrary: v rule: der.induct)
+apply(auto elim!: Prf_elims intro: mkeps_flat split: if_splits)
+done
+
+lemma Prf_injval:
+  assumes "\<Turnstile> v : der c r" 
+  shows "\<Turnstile> (injval r c v) : r"
+using assms
+apply(induct r arbitrary: c v rule: rexp.induct)
+apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits)
+apply(simp add: Prf_injval_flat)
+done
+
+
+
+text {*
+  Mkeps and injval produce, or preserve, Posix values.
+*}
+
+lemma Posix_mkeps:
+  assumes "nullable r"
+  shows "[] \<in> r \<rightarrow> mkeps r"
+using assms
+apply(induct r rule: nullable.induct)
+apply(auto intro: Posix.intros simp add: nullable_correctness Sequ_def)
+apply(subst append.simps(1)[symmetric])
+apply(rule Posix.intros)
+apply(auto)
+done
+
+lemma Posix_injval:
+  assumes "s \<in> (der c r) \<rightarrow> v"
+  shows "(c # s) \<in> r \<rightarrow> (injval r c v)"
+using assms
+proof(induct r arbitrary: s v rule: rexp.induct)
+  case ZERO
+  have "s \<in> der c ZERO \<rightarrow> v" by fact
+  then have "s \<in> ZERO \<rightarrow> v" by simp
+  then have "False" by cases
+  then show "(c # s) \<in> ZERO \<rightarrow> (injval ZERO c v)" by simp
+next
+  case ONE
+  have "s \<in> der c ONE \<rightarrow> v" by fact
+  then have "s \<in> ZERO \<rightarrow> v" by simp
+  then have "False" by cases
+  then show "(c # s) \<in> ONE \<rightarrow> (injval ONE c v)" by simp
+next 
+  case (CH d)
+  consider (eq) "c = d" | (ineq) "c \<noteq> d" by blast
+  then show "(c # s) \<in> (CH d) \<rightarrow> (injval (CH d) c v)"
+  proof (cases)
+    case eq
+    have "s \<in> der c (CH d) \<rightarrow> v" by fact
+    then have "s \<in> ONE \<rightarrow> v" using eq by simp
+    then have eqs: "s = [] \<and> v = Void" by cases simp
+    show "(c # s) \<in> CH d \<rightarrow> injval (CH d) c v" using eq eqs 
+    by (auto intro: Posix.intros)
+  next
+    case ineq
+    have "s \<in> der c (CH d) \<rightarrow> v" by fact
+    then have "s \<in> ZERO \<rightarrow> v" using ineq by simp
+    then have "False" by cases
+    then show "(c # s) \<in> CH d \<rightarrow> injval (CH d) c v" by simp
+  qed
+next
+  case (ALT r1 r2)
+  have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
+  have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
+  have "s \<in> der c (ALT r1 r2) \<rightarrow> v" by fact
+  then have "s \<in> ALT (der c r1) (der c r2) \<rightarrow> v" by simp
+  then consider (left) v' where "v = Left v'" "s \<in> der c r1 \<rightarrow> v'" 
+              | (right) v' where "v = Right v'" "s \<notin> L (der c r1)" "s \<in> der c r2 \<rightarrow> v'" 
+              by cases auto
+  then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v"
+  proof (cases)
+    case left
+    have "s \<in> der c r1 \<rightarrow> v'" by fact
+    then have "(c # s) \<in> r1 \<rightarrow> injval r1 c v'" using IH1 by simp
+    then have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Left v')" by (auto intro: Posix.intros)
+    then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using left by simp
+  next 
+    case right
+    have "s \<notin> L (der c r1)" by fact
+    then have "c # s \<notin> L r1" by (simp add: der_correctness Der_def)
+    moreover 
+    have "s \<in> der c r2 \<rightarrow> v'" by fact
+    then have "(c # s) \<in> r2 \<rightarrow> injval r2 c v'" using IH2 by simp
+    ultimately have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Right v')" 
+      by (auto intro: Posix.intros)
+    then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using right by simp
+  qed
+next
+  case (SEQ r1 r2)
+  have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
+  have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
+  have "s \<in> der c (SEQ r1 r2) \<rightarrow> v" by fact
+  then consider 
+        (left_nullable) v1 v2 s1 s2 where 
+        "v = Left (Seq v1 v2)"  "s = s1 @ s2" 
+        "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "nullable r1" 
+        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
+      | (right_nullable) v1 s1 s2 where 
+        "v = Right v1" "s = s1 @ s2"  
+        "s \<in> der c r2 \<rightarrow> v1" "nullable r1" "s1 @ s2 \<notin> L (SEQ (der c r1) r2)"
+      | (not_nullable) v1 v2 s1 s2 where
+        "v = Seq v1 v2" "s = s1 @ s2" 
+        "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "\<not>nullable r1" 
+        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
+        by (force split: if_splits elim!: Posix_elims simp add: Sequ_def der_correctness Der_def)   
+  then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" 
+    proof (cases)
+      case left_nullable
+      have "s1 \<in> der c r1 \<rightarrow> v1" by fact
+      then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
+      moreover
+      have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
+      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
+      ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using left_nullable by (rule_tac Posix.intros)
+      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using left_nullable by simp
+    next
+      case right_nullable
+      have "nullable r1" by fact
+      then have "[] \<in> r1 \<rightarrow> (mkeps r1)" by (rule Posix_mkeps)
+      moreover
+      have "s \<in> der c r2 \<rightarrow> v1" by fact
+      then have "(c # s) \<in> r2 \<rightarrow> (injval r2 c v1)" using IH2 by simp
+      moreover
+      have "s1 @ s2 \<notin> L (SEQ (der c r1) r2)" by fact
+      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = c # s \<and> [] @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" using right_nullable
+        by(auto simp add: der_correctness Der_def append_eq_Cons_conv Sequ_def)
+      ultimately have "([] @ (c # s)) \<in> SEQ r1 r2 \<rightarrow> Seq (mkeps r1) (injval r2 c v1)"
+      by(rule Posix.intros)
+      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using right_nullable by simp
+    next
+      case not_nullable
+      have "s1 \<in> der c r1 \<rightarrow> v1" by fact
+      then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
+      moreover
+      have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
+      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
+      ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using not_nullable 
+        by (rule_tac Posix.intros) (simp_all) 
+      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using not_nullable by simp
+    qed
+next
+  case (STAR r)
+  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
+  have "s \<in> der c (STAR r) \<rightarrow> v" by fact
+  then consider
+      (cons) v1 vs s1 s2 where 
+        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
+        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (STAR r) \<rightarrow> (Stars vs)"
+        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" 
+        apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
+        apply(rotate_tac 3)
+        apply(erule_tac Posix_elims(6))
+        apply (simp add: Posix.intros(6))
+        using Posix.intros(7) by blast
+    then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" 
+    proof (cases)
+      case cons
+          have "s1 \<in> der c r \<rightarrow> v1" by fact
+          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
+        moreover
+          have "s2 \<in> STAR r \<rightarrow> Stars vs" by fact
+        moreover 
+          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
+          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
+          then have "flat (injval r c v1) \<noteq> []" by simp
+        moreover 
+          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" by fact
+          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" 
+            by (simp add: der_correctness Der_def)
+        ultimately 
+        have "((c # s1) @ s2) \<in> STAR r \<rightarrow> Stars (injval r c v1 # vs)" by (rule Posix.intros)
+        then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" using cons by(simp)
+    qed
+qed
+
+
+section {* Lexer Correctness *}
+
+
+lemma lexer_correct_None:
+  shows "s \<notin> L r \<longleftrightarrow> lexer r s = None"
+  apply(induct s arbitrary: r)
+  apply(simp)
+  apply(simp add: nullable_correctness)
+  apply(simp)
+  apply(drule_tac x="der a r" in meta_spec) 
+  apply(auto)
+  apply(auto simp add: der_correctness Der_def)
+done
+
+lemma lexer_correct_Some:
+  shows "s \<in> L r \<longleftrightarrow> (\<exists>v. lexer r s = Some(v) \<and> s \<in> r \<rightarrow> v)"
+  apply(induct s arbitrary : r)
+  apply(simp only: lexer.simps)
+  apply(simp)
+  apply(simp add: nullable_correctness Posix_mkeps)
+  apply(drule_tac x="der a r" in meta_spec)
+  apply(simp (no_asm_use) add: der_correctness Der_def del: lexer.simps) 
+  apply(simp del: lexer.simps)
+  apply(simp only: lexer.simps)
+  apply(case_tac "lexer (der a r) s = None")
+   apply(auto)[1]
+  apply(simp)
+  apply(erule exE)
+  apply(simp)
+  apply(rule iffI)
+  apply(simp add: Posix_injval)
+  apply(simp add: Posix1(1))
+done 
+
+lemma lexer_correctness:
+  shows "(lexer r s = Some v) \<longleftrightarrow> s \<in> r \<rightarrow> v"
+  and   "(lexer r s = None) \<longleftrightarrow> \<not>(\<exists>v. s \<in> r \<rightarrow> v)"
+using Posix1(1) Posix_determ lexer_correct_None lexer_correct_Some apply fastforce
+using Posix1(1) lexer_correct_None lexer_correct_Some by blast
+
+
+subsection {* A slight reformulation of the lexer algorithm using stacked functions*}
+
+fun flex :: "rexp \<Rightarrow> (val \<Rightarrow> val) => string \<Rightarrow> (val \<Rightarrow> val)"
+  where
+  "flex r f [] = f"
+| "flex r f (c#s) = flex (der c r) (\<lambda>v. f (injval r c v)) s"  
+
+lemma flex_fun_apply:
+  shows "g (flex r f s v) = flex r (g o f) s v"
+  apply(induct s arbitrary: g f r v)
+  apply(simp_all add: comp_def)
+  by meson
+
+lemma flex_fun_apply2:
+  shows "g (flex r id s v) = flex r g s v"
+  by (simp add: flex_fun_apply)
+
+
+lemma flex_append:
+  shows "flex r f (s1 @ s2) = flex (ders s1 r) (flex r f s1) s2"
+  apply(induct s1 arbitrary: s2 r f)
+  apply(simp_all)
+  done  
+
+lemma lexer_flex:
+  shows "lexer r s = (if nullable (ders s r) 
+                      then Some(flex r id s (mkeps (ders s r))) else None)"
+  apply(induct s arbitrary: r)
+  apply(simp_all add: flex_fun_apply)
+  done  
+
+lemma Posix_flex:
+  assumes "s2 \<in> (ders s1 r) \<rightarrow> v"
+  shows "(s1 @ s2) \<in> r \<rightarrow> flex r id s1 v"
+  using assms
+  apply(induct s1 arbitrary: r v s2)
+  apply(simp)
+  apply(simp)  
+  apply(drule_tac x="der a r" in meta_spec)
+  apply(drule_tac x="v" in meta_spec)
+  apply(drule_tac x="s2" in meta_spec)
+  apply(simp)
+  using  Posix_injval
+  apply(drule_tac Posix_injval)
+  apply(subst (asm) (5) flex_fun_apply)
+  apply(simp)
+  done
+
+lemma injval_inj:
+  assumes "\<Turnstile> a : (der c r)" "\<Turnstile> v : (der c r)" "injval r c a = injval r c v" 
+  shows "a = v"
+  using  assms
+  apply(induct r arbitrary: a c v)
+       apply(auto)
+  using Prf_elims(1) apply blast
+  using Prf_elims(1) apply blast
+     apply(case_tac "c = x")
+      apply(auto)
+  using Prf_elims(4) apply auto[1]
+  using Prf_elims(1) apply blast
+    prefer 2
+  apply (smt Prf_elims(3) injval.simps(2) injval.simps(3) val.distinct(25) val.inject(3) val.inject(4))
+  apply(case_tac "nullable r1")
+    apply(auto)
+    apply(erule Prf_elims)
+     apply(erule Prf_elims)
+     apply(erule Prf_elims)
+      apply(erule Prf_elims)
+      apply(auto)
+     apply (metis Prf_injval_flat list.distinct(1) mkeps_flat)
+  apply(erule Prf_elims)
+     apply(erule Prf_elims)
+  apply(auto)
+  using Prf_injval_flat mkeps_flat apply fastforce
+  apply(erule Prf_elims)
+     apply(erule Prf_elims)
+   apply(auto)
+  apply(erule Prf_elims)
+     apply(erule Prf_elims)
+  apply(auto)
+   apply (smt Prf_elims(6) injval.simps(7) list.inject val.inject(5))
+  by (smt Prf_elims(6) injval.simps(7) list.inject val.inject(5))
+  
+  
+
+lemma uu:
+  assumes "(c # s) \<in> r \<rightarrow> injval r c v" "\<Turnstile> v : (der c r)"
+  shows "s \<in> der c r \<rightarrow> v"
+  using assms
+  apply -
+  apply(subgoal_tac "lexer r (c # s) = Some (injval r c v)")
+  prefer 2
+  using lexer_correctness(1) apply blast
+  apply(simp add: )
+  apply(case_tac  "lexer (der c r) s")
+   apply(simp)
+  apply(simp)
+  apply(case_tac "s \<in> der c r \<rightarrow> a")
+   prefer 2
+   apply (simp add: lexer_correctness(1))
+  apply(subgoal_tac "\<Turnstile> a : (der c r)")
+   prefer 2
+  using Posix_Prf apply blast
+  using injval_inj by blast
+  
+
+lemma Posix_flex2:
+  assumes "(s1 @ s2) \<in> r \<rightarrow> flex r id s1 v" "\<Turnstile> v : ders s1 r"
+  shows "s2 \<in> (ders s1 r) \<rightarrow> v"
+  using assms
+  apply(induct s1 arbitrary: r v s2 rule: rev_induct)
+  apply(simp)
+  apply(simp)  
+  apply(drule_tac x="r" in meta_spec)
+  apply(drule_tac x="injval (ders xs r) x v" in meta_spec)
+  apply(drule_tac x="x#s2" in meta_spec)
+  apply(simp add: flex_append ders_append)
+  using Prf_injval uu by blast
+
+lemma Posix_flex3:
+  assumes "s1 \<in> r \<rightarrow> flex r id s1 v" "\<Turnstile> v : ders s1 r"
+  shows "[] \<in> (ders s1 r) \<rightarrow> v"
+  using assms
+  by (simp add: Posix_flex2)
+
+lemma flex_injval:
+  shows "flex (der a r) (injval r a) s v = injval r a (flex (der a r) id s v)"
+  by (simp add: flex_fun_apply)
+  
+lemma Prf_flex:
+  assumes "\<Turnstile> v : ders s r"
+  shows "\<Turnstile> flex r id s v : r"
+  using assms
+  apply(induct s arbitrary: v r)
+  apply(simp)
+  apply(simp)
+  by (simp add: Prf_injval flex_injval)
+  
+
+end
\ No newline at end of file