equal
deleted
inserted
replaced
1034 |
1034 |
1035 \noindent |
1035 \noindent |
1036 We can assume that |
1036 We can assume that |
1037 |
1037 |
1038 \begin{equation} |
1038 \begin{equation} |
1039 (v_{1l}, v_{1r}) \posix^{r_1\,r_2} (v_{2l}, v_{2r}) |
1039 Seq\,v_{1l}\, v_{1r}) \posix_{r_1\,r_2} Seq\,v_{2l}\, v_{2r}) |
1040 \qquad\textrm{and}\qquad |
1040 \qquad\textrm{and}\qquad |
1041 (v_{2l}, v_{2r}) \posix^{r_1\,r_2} (v_{3l}, v_{3r}) |
1041 Seq\,v_{2l}\, v_{2r}) \posix_{r_1\,r_2} Seq\,v_{3l}\, v_{3r}) |
1042 \label{assms} |
1042 \label{assms} |
1043 \end{equation} |
1043 \end{equation} |
1044 |
1044 |
1045 \noindent |
1045 \noindent |
1046 hold, and furthermore that the values have equal length, |
1046 hold, and furthermore that the values have equal length, |
1055 |
1055 |
1056 \noindent |
1056 \noindent |
1057 We need to show that |
1057 We need to show that |
1058 |
1058 |
1059 \[ |
1059 \[ |
1060 (v_{1l}, v_{1r}) \posix^{r_1\,r_2} (v_{3l}, v_{3r}) |
1060 (v_{1l}, v_{1r}) \posix_{r_1\,r_2} (v_{3l}, v_{3r}) |
1061 \] |
1061 \] |
1062 |
1062 |
1063 \noindent holds. We can proceed by analysing how the |
1063 \noindent holds. We can proceed by analysing how the |
1064 assumptions in \eqref{assms} have arisen. There are four |
1064 assumptions in \eqref{assms} have arisen. There are four |
1065 cases. Let us assume we are in the case where |
1065 cases. Let us assume we are in the case where |
1066 we know |
1066 we know |
1067 |
1067 |
1068 \[ |
1068 \[ |
1069 v_{1l} \posix^{r_1} v_{2l} |
1069 v_{1l} \posix_{r_1} v_{2l} |
1070 \qquad\textrm{and}\qquad |
1070 \qquad\textrm{and}\qquad |
1071 v_{2l} \posix^{r_1} v_{3l} |
1071 v_{2l} \posix_{r_1} v_{3l} |
1072 \] |
1072 \] |
1073 |
1073 |
1074 \noindent and also know the corresponding typing judgements. |
1074 \noindent and also know the corresponding typing judgements. |
1075 This is exactly a case where we would like to apply the |
1075 This is exactly a case where we would like to apply the |
1076 induction hypothesis IH~$r_1$. But we cannot! We still need to |
1076 induction hypothesis IH~$r_1$. But we cannot! We still need to |
1085 \qquad\textrm{and}\qquad |
1085 \qquad\textrm{and}\qquad |
1086 |v_{1r}| \not= |v_{2r}| |
1086 |v_{1r}| \not= |v_{2r}| |
1087 \] |
1087 \] |
1088 |
1088 |
1089 \noindent but still \eqref{lens} will hold. Now we are stuck, |
1089 \noindent but still \eqref{lens} will hold. Now we are stuck, |
1090 since the IH does not apply. Sulzmann and Lu overlook this |
1090 since the IH does not apply. |
1091 fact and just apply the IHs. Obviously nothing which a |
|
1092 theorem prover allows us to do. |
|
1093 |
1091 |
1094 |
1092 |
1095 *} |
1093 *} |
1096 |
1094 |
1097 section {* Conclusion *} |
1095 section {* Conclusion *} |