thys/Paper/Paper.thy
changeset 131 ac831326441c
parent 130 44fec0bfffe5
child 132 03ca57e3f199
equal deleted inserted replaced
130:44fec0bfffe5 131:ac831326441c
  1034 
  1034 
  1035 \noindent
  1035 \noindent
  1036 We can assume that 
  1036 We can assume that 
  1037 
  1037 
  1038 \begin{equation}
  1038 \begin{equation}
  1039 (v_{1l}, v_{1r}) \posix^{r_1\,r_2} (v_{2l}, v_{2r})
  1039 Seq\,v_{1l}\, v_{1r}) \posix_{r_1\,r_2} Seq\,v_{2l}\, v_{2r})
  1040 \qquad\textrm{and}\qquad
  1040 \qquad\textrm{and}\qquad
  1041 (v_{2l}, v_{2r}) \posix^{r_1\,r_2} (v_{3l}, v_{3r})
  1041 Seq\,v_{2l}\, v_{2r}) \posix_{r_1\,r_2} Seq\,v_{3l}\, v_{3r})
  1042 \label{assms}
  1042 \label{assms}
  1043 \end{equation}
  1043 \end{equation}
  1044 
  1044 
  1045 \noindent
  1045 \noindent
  1046 hold, and furthermore that the values have equal length, 
  1046 hold, and furthermore that the values have equal length, 
  1055 
  1055 
  1056 \noindent
  1056 \noindent
  1057 We need to show that
  1057 We need to show that
  1058 
  1058 
  1059 \[
  1059 \[
  1060 (v_{1l}, v_{1r}) \posix^{r_1\,r_2} (v_{3l}, v_{3r})
  1060 (v_{1l}, v_{1r}) \posix_{r_1\,r_2} (v_{3l}, v_{3r})
  1061 \]
  1061 \]
  1062 
  1062 
  1063 \noindent holds. We can proceed by analysing how the
  1063 \noindent holds. We can proceed by analysing how the
  1064 assumptions in \eqref{assms} have arisen. There are four
  1064 assumptions in \eqref{assms} have arisen. There are four
  1065 cases. Let us assume we are in the case where
  1065 cases. Let us assume we are in the case where
  1066 we know 
  1066 we know 
  1067 
  1067 
  1068 \[
  1068 \[
  1069 v_{1l} \posix^{r_1} v_{2l}
  1069 v_{1l} \posix_{r_1} v_{2l}
  1070 \qquad\textrm{and}\qquad
  1070 \qquad\textrm{and}\qquad
  1071 v_{2l} \posix^{r_1} v_{3l}
  1071 v_{2l} \posix_{r_1} v_{3l}
  1072 \]
  1072 \]
  1073 
  1073 
  1074 \noindent and also know the corresponding typing judgements.
  1074 \noindent and also know the corresponding typing judgements.
  1075 This is exactly a case where we would like to apply the
  1075 This is exactly a case where we would like to apply the
  1076 induction hypothesis IH~$r_1$. But we cannot! We still need to
  1076 induction hypothesis IH~$r_1$. But we cannot! We still need to
  1085 \qquad\textrm{and}\qquad
  1085 \qquad\textrm{and}\qquad
  1086 |v_{1r}| \not= |v_{2r}|
  1086 |v_{1r}| \not= |v_{2r}|
  1087 \]
  1087 \]
  1088 
  1088 
  1089 \noindent but still \eqref{lens} will hold. Now we are stuck,
  1089 \noindent but still \eqref{lens} will hold. Now we are stuck,
  1090 since the IH does not apply. Sulzmann and Lu overlook this
  1090 since the IH does not apply. 
  1091 fact and just apply the IHs. Obviously nothing which a 
       
  1092 theorem prover allows us to do.
       
  1093 
  1091 
  1094 
  1092 
  1095 *}
  1093 *}
  1096 
  1094 
  1097 section {* Conclusion *}
  1095 section {* Conclusion *}