diff -r 44fec0bfffe5 -r ac831326441c thys/Paper/Paper.thy --- a/thys/Paper/Paper.thy Tue Mar 08 07:17:31 2016 +0000 +++ b/thys/Paper/Paper.thy Tue Mar 08 07:19:55 2016 +0000 @@ -1036,9 +1036,9 @@ We can assume that \begin{equation} -(v_{1l}, v_{1r}) \posix^{r_1\,r_2} (v_{2l}, v_{2r}) +Seq\,v_{1l}\, v_{1r}) \posix_{r_1\,r_2} Seq\,v_{2l}\, v_{2r}) \qquad\textrm{and}\qquad -(v_{2l}, v_{2r}) \posix^{r_1\,r_2} (v_{3l}, v_{3r}) +Seq\,v_{2l}\, v_{2r}) \posix_{r_1\,r_2} Seq\,v_{3l}\, v_{3r}) \label{assms} \end{equation} @@ -1057,7 +1057,7 @@ We need to show that \[ -(v_{1l}, v_{1r}) \posix^{r_1\,r_2} (v_{3l}, v_{3r}) +(v_{1l}, v_{1r}) \posix_{r_1\,r_2} (v_{3l}, v_{3r}) \] \noindent holds. We can proceed by analysing how the @@ -1066,9 +1066,9 @@ we know \[ -v_{1l} \posix^{r_1} v_{2l} +v_{1l} \posix_{r_1} v_{2l} \qquad\textrm{and}\qquad -v_{2l} \posix^{r_1} v_{3l} +v_{2l} \posix_{r_1} v_{3l} \] \noindent and also know the corresponding typing judgements. @@ -1087,9 +1087,7 @@ \] \noindent but still \eqref{lens} will hold. Now we are stuck, -since the IH does not apply. Sulzmann and Lu overlook this -fact and just apply the IHs. Obviously nothing which a -theorem prover allows us to do. +since the IH does not apply. *}