thys/Paper/Paper.thy
changeset 98 8b4c8cdd0b51
parent 97 38696f516c6b
child 99 f76c250906d5
equal deleted inserted replaced
97:38696f516c6b 98:8b4c8cdd0b51
   199   @{thm[mode=Rule] ValOrd.intros(11)[of "v\<^sub>1" "r" "v\<^sub>2" "vs\<^sub>1" "vs\<^sub>2"]}\medskip\\
   199   @{thm[mode=Rule] ValOrd.intros(11)[of "v\<^sub>1" "r" "v\<^sub>2" "vs\<^sub>1" "vs\<^sub>2"]}\medskip\\
   200   @{thm[mode=Rule] ValOrd.intros(12)[of "vs\<^sub>1" "r" "vs\<^sub>2" "v"]}\qquad
   200   @{thm[mode=Rule] ValOrd.intros(12)[of "vs\<^sub>1" "r" "vs\<^sub>2" "v"]}\qquad
   201   @{thm[mode=Axiom] ValOrd.intros(13)[of "r"]}\medskip\\
   201   @{thm[mode=Axiom] ValOrd.intros(13)[of "r"]}\medskip\\
   202   \end{tabular}
   202   \end{tabular}
   203   \end{center}
   203   \end{center}
       
   204 
       
   205   \noindent
       
   206   A prefix of a string s
       
   207 
       
   208   \begin{center}
       
   209   \begin{tabular}{c}
       
   210   @{thm prefix_def[of "s\<^sub>1" "s\<^sub>2"]}
       
   211   \end{tabular}
       
   212   \end{center}
       
   213 
       
   214   \noindent
       
   215   Values and non-problematic values
       
   216 
       
   217   \begin{center}
       
   218   \begin{tabular}{c}
       
   219   @{thm Values_def}\medskip\\
       
   220   @{thm NValues_def}
       
   221   \end{tabular}
       
   222   \end{center}
       
   223 
       
   224 
       
   225   \noindent
       
   226   The point is that for a given @{text s} and @{text r} there are only finitely many
       
   227   non-problematic values.
   204 *} 
   228 *} 
   205 
   229 
   206 text {* 
   230 text {* 
   207   \noindent
   231   \noindent
   208   Some lemmas
   232   Some lemmas we have proved:\bigskip
   209   
   233   
       
   234   @{thm L_flat_Prf}
       
   235 
       
   236   @{thm L_flat_NPrf}
   210 
   237 
   211   @{thm[mode=IfThen] mkeps_nullable}
   238   @{thm[mode=IfThen] mkeps_nullable}
   212 
   239 
   213   @{thm[mode=IfThen] mkeps_flat}
   240   @{thm[mode=IfThen] mkeps_flat}
   214 
   241 
   215   \ldots
   242   @{thm[mode=IfThen] v3}
       
   243 
       
   244   @{thm[mode=IfThen] v4}
       
   245   
       
   246   @{thm[mode=IfThen] PMatch_mkeps}
       
   247   
       
   248   @{thm[mode=IfThen] PMatch1(2)}
       
   249 
       
   250   @{thm[mode=IfThen] PMatch1N}
       
   251 
       
   252   \noindent
       
   253   This is the main theorem that lets us prove that the algorithm is correct according to
       
   254   @{term "s \<in> r \<rightarrow> v"}:
       
   255 
       
   256   @{thm[mode=IfThen] PMatch2}
       
   257 
       
   258   \mbox{}\bigskip
       
   259 *}
       
   260 
       
   261 text {*
       
   262   \noindent
       
   263   Things we like to prove, but cannot:\bigskip
       
   264 
       
   265   If @{term "s \<in> r \<rightarrow> v\<^sub>1"}, @{term "\<turnstile> v\<^sub>2 : r"}, then @{term "v\<^sub>1 \<succ>r v\<^sub>2"}
       
   266   
   216 *}
   267 *}
   217 
   268 
   218 
   269 
   219 text {*
   270 text {*
   220   %\noindent
   271   %\noindent