diff -r 38696f516c6b -r 8b4c8cdd0b51 thys/Paper/Paper.thy --- a/thys/Paper/Paper.thy Sun Feb 07 23:44:34 2016 +0000 +++ b/thys/Paper/Paper.thy Mon Feb 08 09:56:32 2016 +0000 @@ -201,18 +201,69 @@ @{thm[mode=Axiom] ValOrd.intros(13)[of "r"]}\medskip\\ \end{tabular} \end{center} + + \noindent + A prefix of a string s + + \begin{center} + \begin{tabular}{c} + @{thm prefix_def[of "s\<^sub>1" "s\<^sub>2"]} + \end{tabular} + \end{center} + + \noindent + Values and non-problematic values + + \begin{center} + \begin{tabular}{c} + @{thm Values_def}\medskip\\ + @{thm NValues_def} + \end{tabular} + \end{center} + + + \noindent + The point is that for a given @{text s} and @{text r} there are only finitely many + non-problematic values. *} text {* \noindent - Some lemmas + Some lemmas we have proved:\bigskip + @{thm L_flat_Prf} + + @{thm L_flat_NPrf} @{thm[mode=IfThen] mkeps_nullable} @{thm[mode=IfThen] mkeps_flat} - \ldots + @{thm[mode=IfThen] v3} + + @{thm[mode=IfThen] v4} + + @{thm[mode=IfThen] PMatch_mkeps} + + @{thm[mode=IfThen] PMatch1(2)} + + @{thm[mode=IfThen] PMatch1N} + + \noindent + This is the main theorem that lets us prove that the algorithm is correct according to + @{term "s \ r \ v"}: + + @{thm[mode=IfThen] PMatch2} + + \mbox{}\bigskip +*} + +text {* + \noindent + Things we like to prove, but cannot:\bigskip + + If @{term "s \ r \ v\<^sub>1"}, @{term "\ v\<^sub>2 : r"}, then @{term "v\<^sub>1 \r v\<^sub>2"} + *}